
AI/ML/LLM and SE
17-313 Spring 2025

Foundations of Software Engineering

https://cmu-313.github.io

Michael Hilton, Austin Henley, and Nadia Nahar

https://cmu-313.github.io/

• Mid-semester grades released

• Final on May 5 at 1pm

• P3A due tonight

Administrivia

2

2

Smoking Section

• Last full row

3

3

Let’s start with an
AI-generated song…

Just using the prompt:

“Write a song about machine
learning. Give examples of how
machine learning is so great.
And then talk about how it can
also harm if not used with
caution.”
https://suno.com/song/f9b0d75d-d33e-4d2b-aa90-

64a26a2e10e3?sh=OmVaT8GQO7edX1fr 4

https://suno.com/song/f9b0d75d-d33e-4d2b-aa90-64a26a2e10e3?sh=OmVaT8GQO7edX1fr
https://suno.com/song/f9b0d75d-d33e-4d2b-aa90-64a26a2e10e3?sh=OmVaT8GQO7edX1fr

https://openai.com/sora/ 5

https://openai.com/sora/

https://www.youtube.com/watch?v=_dZoscOdDkg

https://www.youtube.com/watch?v=_dZoscOdDkg

https://www.youtube.com/watch?v=_dZoscOdDkg

https://www.youtube.com/watch?v=_dZoscOdDkg

Virtual Assistants

Recommendation Systems

Fraud Detection

Image Recognition 8

AI Assists in Healthcare Diagnostics

Autonomous Vehicles
9

Definition of Artificial Intelligence (AI)

"the science and engineering of making intelligent machines”

- John McCarthy

10

a wide range of technologies, strategies, and

algorithms for machines to mimic human
intelligence

subset of AI focused on the idea that machines

can learn from observations or data

11

Machine Learning in One Slide
(Supervised)

Lots of labelled data

(Inputs, outputs)

Model

Training

“bird”

Input Output

“dog”

Input Output

12

a wide range of technologies, strategies, and

algorithms for machines to mimic human
intelligence

subset of AI focused on the idea that machines

can learn from observations or data

specialized subset of ML that uses neural

networks with many layers (mimics the neural
networks of the human brain)

13

14

Tons of Features

15

DL automates feature extraction -- handles raw data without needing

human-designed features.

Different Categories of ML Algorithms

• Supervised

• Unsupervised

• Reinforcement Learning

16

https://medium.com/@cedric.vandelaer/reinforcement-learning-an-introduction-part-1-4-866695deb4d1 17

https://medium.com/@cedric.vandelaer/reinforcement-learning-an-introduction-part-1-4-866695deb4d1

https://devopedia.org/supervised-vs-unsupervised-learning 18

https://devopedia.org/supervised-vs-unsupervised-learning

https://devopedia.org/supervised-vs-unsupervised-learning 19

https://devopedia.org/supervised-vs-unsupervised-learning

Supervised Learning

20

Supervised Learning:
Different Complexities and Capabilities

Deep Neural NetworkDecision Tree 21

Unsupervised Learning

22

https://devopedia.org/supervised-vs-unsupervised-learning 23

https://devopedia.org/supervised-vs-unsupervised-learning

Reinforcement learning

Agent: The decision-maker (the
ML algorithm)

Environment: The problem space
that the agent interacts with

Action: A step the agent takes to
navigate the environment

Reward: The feedback the agent
receives after taking an action

24

25

Different Categories of ML Algorithms

• Supervised

• Unsupervised

• Reinforcement Learning

26

Activity: Choosing the Algorithm

Three Scenarios:

Scenario A: Music

Recommendation App
Scenario B: Analyzing

Sales Data

Scenario C: Adaptive

Game Difficulty
27

Activity: Choosing the Algorithm

In a team of 3-4 students, for one assigned scenario:

• Discuss which learning strategies (supervised,
unsupervised, or reinforcement) might be suitable for
their scenario

• Determine why one might be more appropriate than the
others.

• Consider the nature of the data, the problem objectives,
and any aspects of adaptability or exploration required.

28

https://medium.com/@cedric.vandelaer/reinforcement-learning-an-introduction-part-1-4-866695deb4d1 29

https://medium.com/@cedric.vandelaer/reinforcement-learning-an-introduction-part-1-4-866695deb4d1

Activity: Choosing the Algorithm

Supervised Learning: train model on historical data;
use labeled data of past user preferences to predict
new songs they might like.

Unsupervised Learning: use clustering techniques to
group similar music or users to offer recommendations
within those clusters.

Reinforcement Learning: adapt to user feedback
(likes/dislikes) over time to improve recommendations,
learning optimal strategies through reward signals.

Scenario A: Music

Recommendation App

30

Activity: Choosing the Algorithm

Supervised Learning: use historical sales data to train
predictive models for forecasting future sales based on
labeled outcomes (e.g., sales figures).

Unsupervised Learning: cluster analysis can identify
groupings or patterns in products frequently
purchased together without prior labels.

Reinforcement Learning: not a typical choice
Scenario B: Analyzing

Sales Data

31

Activity: Choosing the Algorithm

Supervised Learning: use labeled outcomes of
previous game sessions for modeling difficulty
adjustments based on historical performance data

Unsupervised Learning: not typically the primary
approach.

Reinforcement Learning: adapt difficulty levels
dynamically based on player performance feedback
using reward signals (e.g., player scores or game
duration)Scenario C: Adaptive

Game Difficulty

32

Tradeoffs

Deep Neural NetworkDecision Tree 33

Tradeoffs

• Accuracy

• Capabilities (e.g. classification, recommendation, clustering…)

• Amount of training data needed

• Inference latency

• Learning latency

• Model size

• Explainable

• …

34

Black-box View of ML

Image: https://xkcd.com/1838/ 35

36

Which ones are more important?

Scenario A: Music

Recommendation App
Scenario B: Analyzing

Sales Data

Scenario C: Adaptive

Game Difficulty

Accuracy, latency, model size, explainability

37

ML Development Process
(ML Pipeline)

Source: “Software Engineering for Machine Learning: A Case Study” by Amershi et al. ICSE 2019
38

Typical ML Pipeline
• Static

• Get labeled data (data collection, cleaning and, labeling)

• Identify and extract features (feature engineering)

• Split data into training and evaluation set

• Learn model from training data (model training)

• Evaluate model on evaluation data (model evaluation)

• Repeat, revising features

• In production
• Evaluate model on production data; monitor (model monitoring)

• Select production data for retraining (model training + evaluation)

• Update model regularly (model deployment)

39

ML Evaluation (Static)
• Prediction accuracy on learned data vs

• Prediction accuracy on unseen data
• Separate learning set, not used for training

• For binary predictors: false positives vs. false negatives, precision vs. recall

• For numeric predictors: average (relative) distance between real and
predicted value

• For ranking predictors: top-K, etc.

40

ML Evaluation (Static)

https://levity.ai/blog/precision-vs-recall41

https://levity.ai/blog/precision-vs-recall

ML Evaluation (In Production)

• Beyond static data sets, build telemetry

• Identify mistakes in practice

• Use sample of live data for evaluation

• Retrain models with sampled live data
regularly

• Monitor accuracy and intervene

42

SE and ML

SE vs ML

Specification in SE

44

SE vs ML

def detectObjects(image):
"""
Detect objects visible in image.

????
"""

Lack of Specification in ML

45
House? Plant?

SE vs ML
• ML is more data-focused

Relies heavily on data to train models; data preprocessing is crucial

• ML is more experimental
Experiment-driven with model training, testing, and refinement based on empirical data.

• SE is more structured or process-oriented
Structured methodologies (e.g., Agile, Waterfall) guiding the development lifecycle from design
to deployment

• ML is more algorithmic Focus
Priority on development of algorithms (e.g., supervised, unsupervised learning) for pattern
recognition.

• The concept of evaluation is very different
Functional correctness vs accuracy

46

Change of process/ metrics/
mindsets needed…

We often run into engineers
thinking about these as unit
tests. […] It is OK that there is
63 failures. Engineers tend to
think about it as ohh [...] I
need […]. 100% pass rate

Nahar, Nadia, et al. "Beyond the Comfort Zone: Emerging Solutions to Overcome Challenges in Integrating LLMs into Software Products.”

ICSE SEIP 2024. 47

Change of process/ metrics/
mindsets needed…

Nahar, Nadia, et al. "Collaboration challenges in building ml-enabled systems: Communication, documentation, engineering, and process."

Proceedings of the 44th international conference on software engineering. 2022.
48

SE and ML: Connected in Two Ways

Using ML for engineering

How to use AI to help engineering
processes?

Engineering ML systems

How to integrate AI components into
engineering systems?

Software engineering for

Artificial Intelligence: SE4AI
Artificial intelligence for

software engineering: AI4SE

49

How can ML be useful in SE?

• Automation and reducing manual efforts
- automate repetitive tasks such as code generation, bug detection,
and code reviews

- AI powered tools and IDEs for code autocompletion and real-time
suggestions

• Support in problem-solving and decision-making
- analyze large volumes of data to uncover patterns and insights for
informed decision-making in project management etc.

- process and interpret vast amounts of textual data (documentation,
logs, etc.), assisting in efficient diagnostics and troubleshooting

50

Code Generation and Assistance

GitHub Copilot - Visual Studio Marketplace

51

https://www.google.com/url?sa=i&url=https%3A%2F%2Fmarketplace.visualstudio.com%2Fitems%3FitemName%3DGitHub.copilot&psig=AOvVaw0TXsbZhenGAWAVJL1skQnk&ust=1741081270519000&source=images&cd=vfe&opi=89978449&ved=0CBQQjRxqFwoTCPjz46fP7YsDFQAAAAAdAAAAABBD

Generate Code in Different Ways

52

Also useful for…

• Writing Tests

• Refactoring Code

• Understanding Code

53

Benefit

• Increased productivity

• Assists new programmers

54

Limitation:
Incorrect/ Non-optimal code

Yetistiren, Burak, Isik Ozsoy, and Eray Tuzun. "Assessing the quality of GitHub copilot’s code generation." Proceedings of the 18th international

conference on predictive models and data analytics in software engineering. 2022. 55

Limitation: Security

Fu, Yujia, et al. "Security Weaknesses of Copilot-Generated Code in GitHub Projects: An Empirical Study." ACM Transactions on Software Engineering

and Methodology (2025). 56

Risk: Overreliance

https://www.darrenhorrocks.co.uk/why-copilot-making-programmers-worse-at-programming/

Lee, Hao-Ping Hank, et al. "The Impact of Generative AI on Critical Thinking: Self -Reported Reductions in Cognitive Effort and Confidence

Effects From a Survey of Knowledge Workers." (2025). 57

Automated Code Reviews

58

Automated Testing
Very active research area.

• ML-based test generation
Generate test cases intelligently by analyzing code changes, defect history, and user
behaviors, improving test coverage and efficiency

• Designing effective metrics
Develop metrics to evaluate test effectiveness and prioritize testing efforts.

• Intelligent orchestration
Use ML to prioritize and orchestrate test execution efficiently.

• Enhancing CI pipeline
Integrate AI/ML to streamline and enhance the continuous integration process.

59

Generate Property Test for Python

https://proptest.ai/ 60

Project Management

ML models analyze historical project data to forecast
timelines, determine resource allocation, and predict
budgetary needs, aiding in proactive decision-making.

61

Project Management

Microsoft Project

Asana Intelligence

62

ML for Software Security

• Threat Detection and Security Recommendation

- monitor data streams to spot anomalous patterns indicative
of unauthorized access or potential security threats

- offer specific remediation actions

63

Large Language
Models (LLMs)

a wide range of technologies, strategies, and

algorithms for machines to mimic human
intelligence

subset of AI focused on the idea that machines

can learn from observations or data

specialized subset of ML that uses neural

networks with many layers (mimics the neural
networks of the human brain)LLM

advanced deep learning models designed to comprehend,

generate, and manipulate human language 65

Large Language Models (LLMs)

• Language Modeling: Measure probability of a sequence of words
• Input: Text sequence
• Output: Most likely next word

*not actual size

• LLMs are… large
• GPT-3 has 175B parameters
• GPT-4 is estimated to have ~1.24 Trillion

• Pre-trained with up to a PB of Internet text data
• Massive financial and environmental cost

66

Language Models are Pre-trained

Only a few people have resources to train LLMs

Access through API calls

- OpenAI, Google Vertex AI, Anthropic, Hugging Face

For us, these are black box components that make errors!

67

LLMs are far from perfect

68

LLMs are far from perfect

• Hallucinations
• Factually Incorrect Output

• High Latency
• Output words generated one at a time
• Larger models also tend to be slower

• Output format
• Hard to structure output (e.g. extracting date from text)

69

Prompt Engineering

The process of crafting and refining prompts to effectively interact
with LLMs to get accurate, relevant, and useful responses.

70

Writing a Good Prompt
• Key Principles

• Clarity: Clearly define the question or task to avoid ambiguous model
responses.

• Specificity: Provide specific context or details relevant to the desired
output.

• Iterative Refinement: Adjust prompts based on initial outputs to better
align with expectations.

• Practical Tips
• Demonstrate the expected output or structure within the prompt.
• Specify limits, such as word count or style guidelines, to guide the model’s

response.
• Try various phrasings and formats to discover what yields the best results.

71

Many different suggestions and debates

Learn more about prompt at https://www.promptingguide.ai
72

https://www.promptingguide.ai/

Evaluation

It’s really a social science problem more than a science
problem.

It’s just frustrating to come up with some scoring criteria.

Nahar, Nadia, et al. "Beyond the Comfort Zone: Emerging Solutions to Overcome Challenges in Integrating LLMs into Software Products.”

ICSE SEIP 2024. 73

Evaluation

Defining custom metrics through iterative collaboration and
expert consultations: “What do we care about in our output?”

Example: creative writing

• Lexical Diversity (unique word counts)

• Semantic diversity (pairwise similarity)

74

Evaluation

Combining qualitative and quantitative metrics.

3 points

11-21 words each

quantitative/objective metrics

content-groundedness

qualitative/subjective metrics

75

Evaluation

Evaluating subjective metrics using LLM validators

• Define metrics and rubrics for
different qualities of concern.

• LLM gives score based on rubric.

• Example qualities: fluency, salience,
consistency

76

World is
throwing
LLMs at
everything

77

78

Which of these problems should be
solved by an LLM? Why or why not?

● Type checking Java code

● Grading mathematical proofs

● Answering emergency medical questions

● Unit test generation for NodeBB devs

79

Consider alternative solutions, error probability,
risk tolerance and risk mitigation strategies

Alternative Solutions: Are there alternative solutions to your task that

deterministically yield better results? Eg: Type checking Java code

Error Probability: How often do we expect the LLM to correctly solve an

instance of your problem? This will change over time. Eg: Grading mathematical

proofs

Risk tolerance: What’s the cost associated with making a mistake? Eg:

Answering emergency medical questions

Risk mitigation strategies: Are there ways to verify outputs and/or minimize

the cost of errors? Eg: Unit test generation
80

More practical factors to consider when
productionizing

● Operational Costs

● Latency/speed

● Intellectual property

● Security

81

Estimating operational costs

Most LLMs will charge based on prompt length.

Use these prices together with assumptions about usage of your
application to estimate operating costs.

Some companies (like OpenAI) quote prices in terms of tokens -
chunks of words that the model operates on.

• GCP Vertex AI Pricing

• OpenAI API Pricing
82

https://cloud.google.com/vertex-ai/pricing
https://openai.com/pricing

Understanding and optimizing latency/speed

Making inferences using LLMs can be
slow…

Strategies to improve performance:

● Caching - store LLM input/output pairs for
future use

● Streaming responses - supported by most
LLM API providers. Better UX by streaming
response line by line.

83

Open Intellectual Property Concerns

● Was the data used to train these LLMs obtained illegally?

● Who owns the IP associated with LLM outputs?

● Should sensitive information be provided as inputs to LLMs?

84

Security concerns - prompt injection

Kang, Daniel, et al. "Exploiting programmatic behavior of llms: Dual-use through standard security attacks." arXiv preprint arXiv:2302.05733 (2023). https://arxiv.org/abs/2302.05733 85

https://arxiv.org/abs/2302.05733

86

	Slide 1: AI/ML/LLM and SE
	Slide 2: Administrivia
	Slide 3: Smoking Section
	Slide 4: Let’s start with an AI-generated song…
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: Definition of Artificial Intelligence (AI)
	Slide 11
	Slide 12: Machine Learning in One Slide
	Slide 13
	Slide 14
	Slide 15: Tons of Features
	Slide 16: Different Categories of ML Algorithms
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Supervised Learning
	Slide 21: Supervised Learning: Different Complexities and Capabilities
	Slide 22: Unsupervised Learning
	Slide 23
	Slide 24: Reinforcement learning
	Slide 25
	Slide 26: Different Categories of ML Algorithms
	Slide 27: Activity: Choosing the Algorithm
	Slide 28: Activity: Choosing the Algorithm
	Slide 29
	Slide 30: Activity: Choosing the Algorithm
	Slide 31: Activity: Choosing the Algorithm
	Slide 32: Activity: Choosing the Algorithm
	Slide 33: Tradeoffs
	Slide 34: Tradeoffs
	Slide 35: Black-box View of ML
	Slide 36
	Slide 37: Which ones are more important?
	Slide 38: ML Development Process (ML Pipeline)
	Slide 39: Typical ML Pipeline
	Slide 40: ML Evaluation (Static)
	Slide 41: ML Evaluation (Static)
	Slide 42: ML Evaluation (In Production)
	Slide 43: SE and ML
	Slide 44: SE vs ML
	Slide 45: SE vs ML
	Slide 46: SE vs ML
	Slide 47: Change of process/ metrics/ mindsets needed…
	Slide 48: Change of process/ metrics/ mindsets needed…
	Slide 49: SE and ML: Connected in Two Ways
	Slide 50: How can ML be useful in SE?
	Slide 51: Code Generation and Assistance
	Slide 52: Generate Code in Different Ways
	Slide 53: Also useful for…
	Slide 54: Benefit
	Slide 55: Limitation: Incorrect/ Non-optimal code
	Slide 56: Limitation: Security
	Slide 57
	Slide 58: Automated Code Reviews
	Slide 59: Automated Testing
	Slide 60: Generate Property Test for Python
	Slide 61: Project Management
	Slide 62: Project Management
	Slide 63: ML for Software Security
	Slide 64: Large Language Models (LLMs)
	Slide 65
	Slide 66: Large Language Models (LLMs)
	Slide 67: Language Models are Pre-trained
	Slide 68: LLMs are far from perfect
	Slide 69: LLMs are far from perfect
	Slide 70: Prompt Engineering
	Slide 71: Writing a Good Prompt
	Slide 72: Many different suggestions and debates
	Slide 73: Evaluation
	Slide 74: Evaluation
	Slide 75: Evaluation
	Slide 76: Evaluation
	Slide 77: World is throwing LLMs at everything
	Slide 78
	Slide 79: Which of these problems should be solved by an LLM? Why or why not?
	Slide 80: Consider alternative solutions, error probability, risk tolerance and risk mitigation strategies
	Slide 81: More practical factors to consider when productionizing
	Slide 82: Estimating operational costs
	Slide 83: Understanding and optimizing latency/speed
	Slide 84: Open Intellectual Property Concerns
	Slide 85: Security concerns - prompt injection
	Slide 86

