
Introduction
17-313 Spring 2025

Foundations of Software Engineering

https://cmu-313.github.io

Michael Hilton, Austin Henley, and Nadia Nahar

https://cmu-313.github.io/

Introductions

Michael Hilton

Associate Teaching Professor at CMU

A.S. Grossmont Community College 1999

B.S. San Diego State University - 2002

Software Engineer at DoD - 2002 to 2011

M.S. Cal Poly San Luis Obispo - 2013

PhD at Oregon State - 2017

Internship at Microsoft Research - Summer 2017

Assistant/Associate Teaching Professor at CMU - Fall 2017 to current

Austin Henley
B.S. Austin Peay State University, 2011

M.S. University of Memphis, 2013

Ph.D. University of Memphis, 2018

Software Engineer Intern @ First Tennessee Bank, 2012-2013

Research Intern @ National Instruments, 2014

Research Intern @ National Instruments, 2015

Research Intern @ Microsoft, 2016

Research Intern @ IBM, 2017

Assistant Professor @ University of Tennessee 2018-2022

Visiting Researcher @ Microsoft, 2019

Senior Researcher @ Microsoft, 2022-2023

CTO @ BYBE, 2023

VP of Engineering @ Swiftly, 2023-2024

Associate Teaching Professor @ CMU, 2024-present

Nadia Nahar

B.S. University of Dhaka, 2014

M.S. University of Dhaka, 2016

Senior Software Engineer, Icebreakers, 2016 – 2017

Lecturer @ University of Dhaka, 2017 – 2020

PhD, Carnegie Mellon University, 2020 – Ongoing

Software Engineering Intern @ Microsoft – Summer 2022

Research Intern @ Microsoft Research – Summer 2024

Teaching Assistants

Software is everywhere

8

9

Vasa

Vasa

QA

What happened is now called “Vasa syndrome”

• Changing shipbuilding orders

• No specifications for modified keel

• Shifting armaments requirements

• Shipwright’s death

• No way to calculate stability, stiffness,
or sailing characteristics

• Failed pre-launch stability tests

Requirements

Teams

Metrics

The CrowdStrike
Incident (July 2024)

Photo by Smishra1 - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=150535443

LaGuardia Airport, New York City

Metrics

Complex software engineering issues involved
• Software running with kernel-level privilege can

crash the system (BSOD) and prevent booting.

• Content updates more continuous than
software updates

• Insufficient testing of content *and* parser

• No staged roll-outs.

• No way to fix issue remotely after impact.

• Skewed incentives

• Limited liability

Requirements
(Architecture &
Design)

QA

DevOps

Licenses

Software Engineering?

• What is engineering?

• And how is it different from hacking/programming?

16

1968 NATO Conference on Software
Engineering

• Provocative Title

• Call for Action

• “Software crisis”

Margaret Hamilton

18

Course infrastructure and
logistics

Recent FCE:

I might have found this course exceedingly annoying. But I
can't deny the outcomes. I do feel that I've learned a lot in this
class. About working in teams, with software that are hard to
work with, about software development practices, technical
details like Github workflows, open source projects, AI
integration. When it's all said and done, I am grateful for the
class and what I've taken away from it.

Smoking Section

•Last full row

21

“…participants who multitasked on a laptop during a lecture
scored lower on a test compared to those who did not
multitask, and participants who were in direct view of a
multitasking peer scored lower on a test compared to those
who were not. The results demonstrate that multitasking on a
laptop poses a significant distraction to both users and fellow
students and can be detrimental to comprehension of lecture
content.”

22
Faria Sana, Tina Weston, and Nicholas J. Cepeda. 2013. Laptop multitasking hinders classroom
learning for both users and nearby peers. Computing Education

“…participants who multitasked on a laptop during a lecture
scored lower on a test compared to those who did not
multitask, and participants who were in direct view of a
multitasking peer scored lower on a test compared to those
who were not. The results demonstrate that multitasking on a
laptop poses a significant distraction to both users and fellow
students and can be detrimental to comprehension of lecture
content.”

23
Faria Sana, Tina Weston, and Nicholas J. Cepeda. 2013. Laptop multitasking hinders classroom
learning for both users and nearby peers. Computing Education

Course infrastructure and logistics

• Infrastructure/source of truth
• Course website: schedule, slides, syllabus, office hours

• Canvas (and Gradescope) homework, grades, other material
Slack for communication and collaboration.
Git/Github for coding and collaboration

• Logistics
 Lecture in-person only
 All recitations are in-person (Except yesterday)

• Office Hours are flexible.

• If you want to talk to us, DM/email ALL INSTRUCTORS at once.
• TRUST us, it’s faster. If you DM us individually, we might both assume the other

instructor will reply to you first.

Office Hours

• TA office hours:
• TCS Building Lobby

• Professor Office Hours:
• TCS Building Offices (see calendar)

• Purpose of Office Hours:
• Help with assignments

• Discuss issues with course/teams

• Talk about future plans

• Anything else you want to discuss…

Connect with us for the class

• All links on our course website: https://cmu-313.github.io

• Canvas: https://canvas.cmu.edu/courses/42497

• Gradescope: https://www.gradescope.com/courses/835182

• Slack: Check your emails (will send again if you just enroll)
• Slack vs Piazza

https://cmu-313.github.io/
https://canvas.cmu.edu/courses/42497
https://www.gradescope.com/courses/835182

Prerequisites

• Assumes working knowledge of popular programming
languages (e.g., 15-121, 15-122)

• You will have the best experience if you have already had an
internship or been involved in a large-ish software
development project (ask us if you have any questions)

• How is it different from 17-214?
• 17-313 largely focused on human issues and quality beyond

functional correctness

• 17-313 focused on larger scale

Readings, Quizzes, and Participation Activities

• Reading assignments for some lectures

• Preparing in-class discussions: background material, case
descriptions, possibly also podcast, video, Wikipedia

• In-person activities
• Lecture: Active learning exercises in almost every lecture

• Most will be done on physical paper and turned in at the end of class.

• Recitation: Working sessions, submission on Canvas/Gradescope

• All of the above count as graded “participation activities”
• You may miss up to 4 participation activities with no grade penalty

(No need to send emails asking permission)

Textbook

• No single textbook

• Assigned readings from different sources

• Book chapters (library)

• News articles

• Lecture notes

• Recommended supplementary
reading: Software Engineering at Google

• Available for free online (legally!):
https://abseil.io/resources/swe-book

Gaining Experience: Central to 17-313!

• Case study analyses

• Team assignments

• Teamwork exercises

• Open-source engagement

• Hands-on experience is key!!!
• “Learn by Doing”

Evaluation

• Assignments (60 %)

• Regular homework projects, mostly in teams with individual
component

• Open-source engagement

• Midterms (20 %)

• Participation activities (20 %)
• In-class exercises

• Pre-class reading assignments

• Recitation exercises

“Homework” Assignments / Projects

• P1: Setup and test a large existing software product
• Get up-to-speed with new technologies quickly and on your own

• P2: Collaborative development on a large software project
• Add features and follow SE process

• P3: Continuous Integration + Deployment

• P4: Develop a design doc and integrate with an AI service.

• P5: Open-source Excursion
• Open-ended project: contribute to an OSS project using everything

you have learned; get kudos for having PRs merged

Recitations

• Practical tasks, preparation for homework, extra material,
discussions

• Have your GitHub account at the ready.
• Bring your laptop!

• This week only: Async/offline recitation for NodeBB
(to prepare for P1 and P2)

• From P2 onward: Project teams will all be in the same
recitations… Good (forced) opportunity to meet in person

• We will track attendence

Warning! Course & HW structure may be
different than what you are used to…

• Lecture topics are on high-level ideas about software
engineering; case studies and experiences

• Projects require applying these ideas to technical artifacts

• Projects simulate “real-world” professional SE experience

• Technical aspects of project will not be taught in class
• Explicit learning goal: learn new tools, languages, etc. on your own
• Ask for help when needed; recitations provide demos and resources

• Project requirements are often vague or under-specified
(intentionally)
• Feel free to ask for clarifications, but expect subjective responses
• Focus for assessment is engagement, not absolute correctness

Team Assignments

• Mirror realistic setting

• Assigned teams throughout the semester

• Fill in team building survey before next lecture

• Teamwork surveys every week

• Conflict resolution process as needed

• Most team assignments have individual components

Professionalism

• Being a professional means, you must work well with others

• The best professionals are those who make those around
them better

• If you feel someone is not treating you or someone else in a
professional manner, you have two options:
• If you feel you have the standing to do so, speak up!

• Reach out to the course staff, and we will meet with you privately to
discuss it, as well as preserve your anonymity

Final Projects

• Open-source excursion is the most fun part of the course!

• Very open-ended project. 24% of overall grade.

• Brings together everything you will have learned from
lecture and prior assignments

• Teamwork and communication is very important

• In-person presentation in finals week (no exam)

• Do NOT book flight tickets for end-of-semester holidays
until finals are scheduled. You will lose points for missing final
presentations if you fly out early.

Late day policy

• Assignments: No late days
• Simply doesn't work with team assignments

• Plan for unexpected delays ahead of time (not just before deadline).

• Participation activities (lecture + recitation): Accommodations in
case of health issues, travel for interviews, university sports, etc.
• Everyone gets 4 free absences. No need to inform us beforehand.

• Beyond 4 absences, participation grade can be affected.

• Inform us of extended absences (e.g., hospitalization). We can help you make up
some of the lost points in such cases, in conjunction with your advisor.

• If you have an assignment due after a trip, turn it in before you leave.
• You may not have Internet where you’re going.

• Your return travel may be delayed beyond the assignment deadline!

Academic Honesty

• In group work, be honest about contribution of group
members; do not cover for others

• Unless explicitly prohibited, you may use generative AI (e.g.
ChatGPT) to help you write your prose and code. You are
responsible for its correctness. Be sure to attribute the
content to the service you used. (let us know if you have
concerns about teammate’s work)

• DO NOT submit participation sheets for people who are not
in class

For next class: survey, scheduling

First-week Survey due Thursday

• Form groups based on schedule availability.
• This is ridiculously important.
• Identify experience and working styles.
• Participation point

• Help us shape the course based on
• your background knowledge
• your interests

• Posting to Canvas. We will also post on slack after
inviting you all

• https://forms.gle/xpFLBZVf9XNA9YWj8

https://forms.gle/xpFLBZVf9XNA9YWj8

Project P1 posted online

• P1A: Checkpoint due this Friday (January 17th, 11:59pm)
• Only 5% of total P1 points – meant to ensure you start on time
• Only need to be able to install and run NodeBB locally

• P1B: Due next week on Thursday (January 23rd, 11:59PM)
• Refactor code in a single file to address code quality warnings.
• Validate change via test coverage and manual testing
• Expect to be technically challenging for non-experts; purpose is to

learn new things and engage with a large code base without much
hand-holding.

	Slide 1: Introduction
	Slide 2: Introductions
	Slide 3: Michael Hilton
	Slide 4: Austin Henley
	Slide 5: Nadia Nahar
	Slide 6: Teaching Assistants
	Slide 7: Software is everywhere
	Slide 8
	Slide 9
	Slide 10
	Slide 11: Vasa
	Slide 12: Vasa
	Slide 13: What happened is now called “Vasa syndrome”
	Slide 14: The CrowdStrike Incident (July 2024)
	Slide 15: Complex software engineering issues involved
	Slide 16: Software Engineering?
	Slide 17: 1968 NATO Conference on Software Engineering
	Slide 18: Margaret Hamilton
	Slide 19: Course infrastructure and logistics
	Slide 20: Recent FCE:
	Slide 21: Smoking Section
	Slide 22
	Slide 23
	Slide 24: Course infrastructure and logistics
	Slide 25: Office Hours
	Slide 26: Connect with us for the class
	Slide 28: Prerequisites
	Slide 29: Readings, Quizzes, and Participation Activities
	Slide 30: Textbook
	Slide 31: Gaining Experience: Central to 17-313!
	Slide 32: Evaluation
	Slide 33: “Homework” Assignments / Projects
	Slide 34: Recitations
	Slide 35: Warning! Course & HW structure may be different than what you are used to…
	Slide 36: Team Assignments
	Slide 37: Professionalism
	Slide 38: Final Projects
	Slide 39: Late day policy
	Slide 40: Academic Honesty
	Slide 41: For next class: survey, scheduling
	Slide 42: First-week Survey due Thursday
	Slide 43: Project P1 posted online

