
Software Archaeology
17-313: Foundations of Software Engineering

https://cmu-313.github.io

Michael Hilton and Chris Timperley
Fall 2025

https://cmu-313.github.io/

Administrivia (1/4)

• Project 1(a) is due Friday, August 29th, 11:59pm.

• If you haven’t: PLEASE FILL OUT TEAMWORK SURVEY!

• Get started early, ask for help, and check the #technical-support
channel; chances are your questions have been asked by others!

Administrivia (2/4)
• Initial NodeBB repository had some

failing tests (see error on right)

• We have disabled the failing tests

• To make sure that you have the latest
changes, you can hit “Sync fork” on
your repository.

Administrivia (3/4): Survey Results

Administrivia (4/4): Slack
Lots of great help for each other on #technicalsupport, keep up the
good work!

use ✅ emoji to signal thread is answered

We also have: #f25-announcements
Please Search before asking new questions
Please put a picture of your face!!
We don’t guarantee round the clock availability

Smoking Section

•Last full row

6

Context: big ole pile of code
• … do something with it!

7

Participation Activity: Part 1
• Take out a piece of paper (or ask for one)
• Write down the challenges you’ve faced trying to understand someone

else’s code
• Pair with your neighbor and discuss your answers. Do you agree?
• Share with the class!
• Write your own andrewID on the paper; leave it at the end of class.

You will never
understand the entire

system!

9

Challenge: How do I tackle this codebase?

10

Participation Activity: Part 2
• Write down strategies to understand a large codebase that is

unfamiliar to you

Challenge: How do I tackle this codebase?

• Leverage your previous experiences (languages, technologies,
patterns)
• Consult documentation, whitepapers
• Talk to experts, code owners
• Follow best practices to build a working model of the system

12

Bad news: There are few helpful resources!

• Working Effectively with Legacy Code
Michael C. Feathers. 2004
• Re-Engineering Legacy Software

Chris Birchall. 2016
• The Legacy Code Programmer's Toolbox

Jonathan Boccara. 2019

Why? Because of Tacit Knowledge

14

Today: How to Tackle New Codebases
• Goal: develop and test a working model about

how (part of) a system works

• Working Model: an understanding of the
pieces of the system (components), and their
interactions (connections)

• How to quickly build, test and refine models
• explore various tools, tips, and techniques

15

Program comprehension strategies

Novice
• Reads code line by line
• Revisits same code

repeatedly
• Trial and error
• Only tests “happy path”

Expert
• “Top down”
• Recognizes patterns
• Forms hypotheses
• Checks up/downstream

consequences

Observation: Software is full of patterns

• File structure
• System architecture
• Code structure
• Names
• …

17

Observation: Software is massively redundant

• There’s always something to
copy/use as a starting point!

18

Observation: Code must run to do stuff…

19

Observation: If code runs, it must have a beginning…

20

Observation: If code runs, it must exist…

21

How to build, test, and refine mental models

Examine
ar#facts without

running code

Probe
running system to
observe behavior

Modify
code, rebuild, and

assess impact

How to build, test, and refine mental models

Examine
ar#facts without

running code

Probe
running system to
observe behavior

Modify
code, rebuild, and

assess impact

Can code be examined, probed, and modified?
White-box Black-boxGrey-box

Source code built locally Server-side apps running remotelyBinaries running locally
Open Source Closed Source Open Source Closed Source

Talk to NSA

examine
probe
modify

examine
probe
modify *

examine
probe
modify *

examine
probe
modify

Creating a model of
unfamiliar code

25

Source code built
locally

Live Demonstration: NodeBB

26

How to build, test, and refine mental models

Examine
ar#facts without

running code

Probe
running system to
observe behavior

Modify
code, rebuild, and

assess impact

How to build, test, and refine mental models

Probe
running system to
observe behavior

Modify
code, rebuild, and

assess impact

Examine
ar#facts without

running code

Examine artifacts to build a mental model

🧐 Ask
• How do we build / test / run it?

• How is this system structured?
• Where are the entrypoints?
• Where are the seams?

Can we probe them?
• Where is data persisted?

• What technologies does it use?

• What are its stated features? Limitations?

• Is the project active?

🔎 Scan
• Source: code

• Build/CI: package.json, Docker, workflows

• Config: env vars, config.json, ...

• Docs: README, Documentation

• History: commits, issues, PRs, projects

🏆 Goal
• a build/run command
• an entry point that you can target
• a seam that you can probe

Tip: Configure and use your IDE to its full potential

• We will provide support for
DevContainers in VSCode in this course
• bundles together everything you need into a

Docker image that behaves like a native install

• Right click on code to learn more
• variables, functions, classes, modules, …
• Go to Definition, Go to References,
Rename Symbol, Refactor, …

• Install and explore IDE Extensions
• Redis, ESLint, OpenAPI Editor, LiveShare, …

Tip: Consider documentation and tutorials judiciously

• Info on how to build the system, its
dependencies, and how to use it
• Great for finding entry points
• Can tell you about the overall

system architecture; more on that
topic later in the semester

• ⚠ Often out of date! Treat as a
starting point rather than truth

Tip: Use discussion boards and issue trackers

• Are features unimplemented?
• Is the project still being maintained?
• Is someone else having the same issue?

• Found an issue with the code? File a GitHub issue
• Having a hard time getting some to work? Trying

to change something? Post to the NodeBB
forums
• Have a question about {Node, Redis, Express, …}?

Post to StackOverflow or Slack.

Tip: Use AI to explain parts of the code — but be careful

• Used carefully, AI tools can help you quickly tackle new codebases
• These tools fail confidently; expect errors and omissions, and

cross-check against code, docs, and tests before trusting results.

• We will have a whole lecture on this new, emerging skill later in
the course — for now, experiment with AI, but don’t rely on it

Tip: Look at file structure, ownership, and history

• Files are not randomly named and organized. Directory structures and
naming conventions reveal patterns.
• Inspect history to learn ownership and stability: identify contributors, recency

of changes, and churn. Treat stale or recently rewritten files with caution.

How to build, test, and refine mental models

Examine
ar#facts without

running code

Modify
code, rebuild, and

assess impact

Probe
running system to
observe behavior

Probe to test your mental model

🧪 Hypothesis à Experiment
• Introduce a probe to observe the system at

a given seam or entry point

• Use the observed behavior to confirm or
refute your hypothesis

• Gradually build confidence in your
understanding of system behavior

• Example:
When I click X, handler Y runs
à Set a breakpoint in Y then trigger X

🔬 Probes & Triggers
• Add breakpoints, logpoints, and step
• Logging: ./nodebb dev
• Print statements
• Bruno / Postman / curl / httpie
• Database viewers

🏆 Goal
• One confirmed or refuted hypothesis
• One short note (trigger à code path à signal)
• One next probe or modification

https://code.visualstudio.com/docs/debugtest/debugging
https://code.visualstudio.com/blogs/2018/07/12/introducing-logpoints-and-auto-attach

Tip: Instrument the source code
• Print debugging

• Quick and easy
• Cons: need to rebuild + restart; easy to commit by accident

• Structured logging
• Add levels, timestamps, and context; better for collecting data in deployment
• Cons: need to rebuild + restart

• Debuggers
• Inspect locals, call stack, evaluate expressions
• Add breakpoints as you go; no need to rebuild + restart
• No changes to the code means no risk of accidental changes
• We will explore the debugger in more depth later in the course

Tip: Use developer tools in the browser to spy on traffic

• Spy on web traffic while
you use the app

• Chrome DevTools (also
used by Brave)
• Firefox Dev Tools
• Safari Web Inspector

• Bonus: Use Bruno,
Postman, httpie, or curl
to trigger API requests

https://developer.chrome.com/docs/devtools/
https://firefox-source-docs.mozilla.org/devtools-user/
https://developer.apple.com/safari/tools/
https://www.usebruno.com/?ref=apisyouwonthate.com
https://www.postman.com/
https://httpie.io/
https://curl.se/

Tip: Peek at the database

• Use the Redis extension that’s
provided with the DevContainer

• Perform an action (e.g., create or
delete a topic) and watch which
keys / fields change

• filter by prefix to keep things
manageable (topic:*, post:*, user:*)

• Use to confirm or refute your
hypotheses about data flow

How to build, test, and refine mental models

Examine
ar#facts without

running code

Probe
running system to
observe behavior

Modify
code, rebuild, and

assess impact

Modify code to validate your model

🏗 Plan and execute your change
• What behavior should change if your

model is correct?

• What’s the simplest change that you can
make?

• What signal can you observe? (user
interface, API, logs, database, test case)

• Rebuild the code and see what happens!

• Tip: delete debugging is a powerful tool

📈 Assess impact
• Did the predicted signal change?

• If yes, your model holds for now.

• If not, you need to revise it.

🏆 Goal
• One change with a clear effect
• A note of what it confirms or refutes
• A next step (examine, probe, modify)

Document and share your findings!
• Update README and docs
• Or better: use a Developer Wiki
• Use Mermaid for diagrams

• Collaborate with others
• use LiveShare to debug, explore,

and program collaboratively

• Include negative results, too!
51

https://mermaid.js.org/
https://www.digitalocean.com/community/tutorials/how-to-use-live-share-with-visual-studio-code

Next Time: 737-MAX Case Study

