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Administrivia (1/4)

• Project 1(a) is due Friday, August 29th, 11:59pm.

• If you haven’t: PLEASE FILL OUT TEAMWORK SURVEY!

• Get started early, ask for help, and check the #technical-support 
channel; chances are your questions have been asked by others!  



Administrivia (2/4)
• Initial NodeBB repository had some 

failing tests (see error on right)

• We have disabled the failing tests

• To make sure that you have the latest 
changes, you can hit “Sync fork” on 
your repository.



Administrivia (3/4): Survey Results



Administrivia (4/4): Slack
Lots of great help for each other on #technicalsupport, keep up the 
good work!

use ✅ emoji to signal thread is answered

We also have: #f25-announcements
Please Search before asking new questions
Please put a picture of your face!!
We don’t guarantee round the clock availability



Smoking Section

•Last full row
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Context: big ole pile of code
• … do something with it!
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Participation Activity: Part 1
• Take out a piece of paper (or ask for one)
• Write down the challenges you’ve faced trying to understand someone 

else’s code
• Pair with your neighbor and discuss your answers. Do you agree?
• Share with the class!
• Write your own andrewID on the paper; leave it at the end of class.



You will never 
understand the entire 

system!
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Challenge: How do I tackle this codebase?
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Participation Activity: Part 2
• Write down strategies to understand a large codebase that is 

unfamiliar to you



Challenge: How do I tackle this codebase?

• Leverage your previous experiences (languages, technologies, 
patterns)
• Consult documentation, whitepapers
• Talk to experts, code owners
• Follow best practices to build a working model of the system
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Bad news: There are few helpful resources!

• Working Effectively with Legacy Code 
Michael C. Feathers. 2004
• Re-Engineering Legacy Software

Chris Birchall. 2016
• The Legacy Code Programmer's Toolbox

Jonathan Boccara. 2019



Why? Because of Tacit Knowledge
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Today: How to Tackle New Codebases
• Goal: develop and test a working model about 

how (part of) a system works

• Working Model: an understanding of the 
pieces of the system (components), and their 
interactions (connections)

• How to quickly build, test and refine models
• explore various tools, tips, and techniques
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Program comprehension strategies

Novice
• Reads code line by line
• Revisits same code 

repeatedly
• Trial and error
• Only tests “happy path”

Expert
• “Top down”
• Recognizes patterns
• Forms hypotheses
• Checks up/downstream 

consequences



Observation: Software is full of patterns

• File structure
• System architecture
• Code structure
• Names
• …
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Observation: Software is massively redundant

• There’s always something to 
copy/use as a starting point!
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Observation: Code must run to do stuff…
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Observation: If code runs, it must have a beginning…
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Observation: If code runs, it must exist…
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How to build, test, and refine mental models
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code, rebuild, and 

assess impact
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Can code be examined, probed, and modified?
White-box Black-boxGrey-box

Source code built locally Server-side apps running remotelyBinaries running locally
Open Source Closed Source Open Source Closed Source

Talk to NSA

examine
probe
modify

examine
probe
modify *

examine
probe
modify *

examine
probe
modify



Creating a model of 
unfamiliar code
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Source code built 
locally



Live Demonstration: NodeBB
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Examine artifacts to build a mental model

🧐 Ask
• How do we build / test / run it?

• How is this system structured?
• Where are the entrypoints?
• Where are the seams?

Can we probe them?
• Where is data persisted?

• What technologies does it use?

• What are its stated features? Limitations?

• Is the project active?

🔎 Scan
• Source: code

• Build/CI: package.json, Docker, workflows

• Config: env vars, config.json, ...

• Docs: README, Documentation

• History: commits, issues, PRs, projects

🏆 Goal
• a build/run command
• an entry point that you can target
• a seam that you can probe



Tip: Configure and use your IDE to its full potential

• We will provide support for 
DevContainers in VSCode in this course
• bundles together everything you need into a 

Docker image that behaves like a native install

• Right click on code to learn more
• variables, functions, classes, modules, …
• Go to Definition, Go to References, 
Rename Symbol, Refactor, …

• Install and explore IDE Extensions
• Redis, ESLint, OpenAPI Editor, LiveShare, …



Tip: Consider documentation and tutorials judiciously

• Info on how to build the system, its 
dependencies, and how to use it
• Great for finding entry points
• Can tell you about the overall 

system architecture; more on that 
topic later in the semester

• ⚠ Often out of date! Treat as a 
starting point rather than truth



Tip: Use discussion boards and issue trackers

• Are features unimplemented?
• Is the project still being maintained?
• Is someone else having the same issue?

• Found an issue with the code? File a GitHub issue
• Having a hard time getting some to work? Trying 

to change something? Post to the NodeBB 
forums
• Have a question about {Node, Redis, Express, …}? 

Post to StackOverflow or Slack.



Tip: Use AI to explain parts of the code — but be careful

• Used carefully, AI tools can help you quickly tackle new codebases
• These tools fail confidently; expect errors and omissions, and 

cross-check against code, docs, and tests before trusting results.

• We will have a whole lecture on this new, emerging skill later in 
the course — for now, experiment with AI, but don’t rely on it



Tip: Look at file structure, ownership, and history

• Files are not randomly named and organized. Directory structures and 
naming conventions reveal patterns.
• Inspect history to learn ownership and stability: identify contributors, recency 

of changes, and churn. Treat stale or recently rewritten files with caution.
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Probe to test your mental model

🧪 Hypothesis à Experiment
• Introduce a probe to observe the system at 

a given seam or entry point 

• Use the observed behavior to confirm or 
refute your hypothesis

• Gradually build confidence in your 
understanding of system behavior

• Example:
When I click X, handler Y runs
à Set a breakpoint in Y then trigger X

🔬 Probes & Triggers
• Add breakpoints, logpoints, and step 
• Logging: ./nodebb dev
• Print statements
• Bruno / Postman / curl / httpie
• Database viewers

🏆 Goal
• One confirmed or refuted hypothesis
• One short note (trigger à code path à signal)
• One next probe or modification 

https://code.visualstudio.com/docs/debugtest/debugging
https://code.visualstudio.com/blogs/2018/07/12/introducing-logpoints-and-auto-attach


Tip: Instrument the source code
• Print debugging

• Quick and easy
• Cons: need to rebuild + restart; easy to commit by accident

• Structured logging
• Add levels, timestamps, and context; better for collecting data in deployment
• Cons: need to rebuild + restart

• Debuggers
• Inspect locals, call stack, evaluate expressions
• Add breakpoints as you go; no need to rebuild + restart
• No changes to the code means no risk of accidental changes
• We will explore the debugger in more depth later in the course



Tip: Use developer tools in the browser to spy on traffic

• Spy on web traffic while 
you use the app

• Chrome DevTools (also 
used by Brave)
• Firefox Dev Tools
• Safari Web Inspector

• Bonus: Use Bruno, 
Postman, httpie, or curl 
to trigger API requests

https://developer.chrome.com/docs/devtools/
https://firefox-source-docs.mozilla.org/devtools-user/
https://developer.apple.com/safari/tools/
https://www.usebruno.com/?ref=apisyouwonthate.com
https://www.postman.com/
https://httpie.io/
https://curl.se/


Tip: Peek at the database

• Use the Redis extension that’s 
provided with the DevContainer

• Perform an action (e.g., create or 
delete a topic) and watch which 
keys / fields change

• filter by prefix to keep things 
manageable (topic:*, post:*, user:*)
 

• Use to confirm or refute your 
hypotheses about data flow
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Modify code to validate your model

🏗 Plan and execute your change
• What behavior should change if your 

model is correct?

• What’s the simplest change that you can 
make?

• What signal can you observe? (user 
interface, API, logs, database, test case)

• Rebuild the code and see what happens!

• Tip: delete debugging is a powerful tool

📈 Assess impact
• Did the predicted signal change?

• If yes, your model holds for now.

• If not, you need to revise it.

🏆 Goal
• One change with a clear effect
• A note of what it confirms or refutes
• A next step (examine, probe, modify)



Document and share your findings!
• Update README and docs
• Or better: use a Developer Wiki
• Use Mermaid for diagrams

• Collaborate with others
• use LiveShare to debug, explore, 

and program collaboratively

• Include negative results, too!
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https://mermaid.js.org/
https://www.digitalocean.com/community/tutorials/how-to-use-live-share-with-visual-studio-code


Next Time: 737-MAX Case Study


