
Software Archaeology
17-313 Spring 2025

Foundations of Software Engineering

https://cmu-313.github.io

Michael Hilton, Austin Henley, and Nadia Nahar

https://cmu-313.github.io/

• Part (b) is due Thursday, Jan 23rd, 11:59pm.

• If you haven’t: PLEASE FILL OUT TEAMWORK SURVEY!

• Get started early, ask for help, and check the #technical-

support channel; chances are your questions have been

asked by others!

Administrivia

Smoking Section

•Last full row

3

Learning Goals

• Understand and scope the task of taking on and
understanding a new and complex piece of existing software

• Appreciate the importance of configuring an effective IDE

• Contrast different types of code execution environments
including local, remote, application, and libraries

• Enumerate both static and dynamic strategies for
understanding and modifying a new codebase

4

Context: big ole pile of code

• … do something with it!

5

Participation Activity—Part 1

• Take out a piece of paper (or ask for one).

• Write down the challenges you’ve faced trying to
understand someone else’s code.

• Pair with your neighbor and discuss your answers. Do you
agree?

• Share with the class!

• Write your own andrewID on the paper, leave it at the end of
class.

You will never
understand the
entire system!

7

Challenge: How do I tackle this
codebase?

8

Participation Activity—Part 2

• Write down strategies to understand a large codebase
that is unfamiliar to you.

Challenge: How do I tackle this
codebase?
• Leverage your previous experiences (languages,

technologies, patterns)

• Consult documentation, whitepapers

• Talk to experts, code owners

• Follow best practices to build a working model of the system

10

Bad news: There are few helpful resources!

• Working Effectively with
Legacy Code.
Michael C. Feathers. 2004.

• Re-Engineering Legacy
Software.
Chris Birchall. 2016.

• The Legacy Code Programmer's
Toolbox.
Jonathan Boccara. 2019.

11

Why? Because of Tacit Knowledge

12

Today: How to tackle codebases

• Goal: develop and test a working model or
set of working hypotheses about how (some
part of) a system works

• Working model: an understanding of the
pieces of the system (components), and the
way they interact (connections)

• Observation, probes, and hypothesis testing
• Helpful tools and techniques! 13

Live Demonstration: tldraw

https://github.com/tldraw/tldraw

14

https://github.com/tldraw/tldraw

Participation Activity—Part 3

• Write down what you would do if you wanted to modify
the Duplicate functionality.

Steps to Understand a New Codebase

• Look at README.md

• Clone the repo.

• Build the codebase.

• Figure out how to make it run.

• What do you want to mess with?

• Traceability - Attach a debugger
• View Source

• Find the logs.

• Search for constants (strings, colors, weird integers (#DEADBEEF))

My experiences (headaches) at
companies
• Documentation was ALWAYS out of date—often the core

devs didn’t know

• Had to ask someone to ask someone to help me get the
project building (i.e., sit beside me for hours)

• Better take notes… not unusual to break something and
need to do it all again

• Often the authors are no longer there

• So many design decisions are never written down, or they
are trapped in old Jira tickets, commit messages, and emails

Program comprehension strategies

Novice

• Reads code line by line

• Revisits same code
repeatedly

• Trial and error

• Only tests “happy path”

Expert

• “Top down”

• Recognizes patterns

• Forms hypotheses

• Checks up/downstream
consequences

Observation: Software is full of patterns

• File structure

• System architecture

• Code structure

• Names

• …

19

Observation: Software is massively redundant

• There’s always something to
copy/use as a starting point!

20

Observation: Code must run to do stuff!

21Ask me about the
11,000-line file

Observation: If code runs, it must have a beginning…

22

Observation: If code runs, it must exist…

23

Code must exist. But where?

• Locally installed programs: run cmd, OS launch, I/O events, etc.
• Binaries (machine code) on your computer

• Local applications in dev: build + run, test, deploy (e.g., docker)
• Source code in repository (+ dependencies)

• Web apps server-side: Browser sends HTTP request (e.g., GET, POST)
• Code runs remotely (you can only observe outputs)

• Web apps client-side: Browser runs JavaScript, event handlers
• Source code is downloaded and run locally (see: browser dev tools!)

Can running code be
Probed/Understood/Edited?

26

White-box Black-boxGrey-box

Source code built locally Server-side apps running remotelyBinaries running locally

Open source Closed source Open source Closed source

(P+U) (P) (U) (Talk to NSA)(P+U+E)

Creating a model of
unfamiliar code

27

Source code built
locally

Information Gathering

• Basic needs:
• Code/file search and navigation

• Code editing (probes)

• Execution of code, tests

• Observation of output (observation)

• Many choices here on tools! Depends on circumstance.
• grep/find/etc. Knowing Unix tools is invaluable

• A decent IDE

• Debugger

• Test frameworks + coverage reports

• Google (or your favorite web search engine)

• ChatGPT

28

Static Information Gathering: Use an IDE!
Real software is too complex to keep in your head

29

Live Demonstration: tldraw

https://github.com/tldraw/tldraw

30

https://github.com/tldraw/tldraw

Consider documentation and tutorials judiciously

• Great for discovering entry points!

• Can teach you about general
structure, architecture (more on this
later in the semester)

• Often out of date.

• As you gain experience, you will
recognize more of these, and you
will immediately know something
about how the program works

• Also: discussion boards; issue
trackers

32

Discussion Boards and Issue Trackers

• Software is written by
people.

• How can we talk to them?

• Fortunately, they probably
aren’t dead.

• So, you can report
problems on GitHub.

• Or, ask them questions on
StackOverflow.

Dynamic Information Gathering
Change helps to inform and refine mental models

• Build it.

• Run it.

• Change it.

• Run it again.

• How did the behavior change?

34

Probes: Observe, control or “lightly”
manipulate execution

• print(“this code is running!”)

• Structured logging

• Debuggers
• Breakpoint, eval, step through / step over

• (Some tools even support remote
debugging)

• Delete debugging

• Chrome Developer Tools

Step 0: Sanity check basic model + hypotheses

• Confirm that you can build and run the code.
• Ideally both using the tests provided, and by hand.

• Confirm that the code you are running is the code you built

• Confirm that you can make an externally visible change

• How? Where? Starting points:
• Run an existing test, change it

• Write a new test

• Change the code, write or rerun a test that should notice the change

• Ask someone for help

Document and share your findings!

• Update README and docs
• Or better: use a Developer Wiki

• Use Mermaid for diagrams

• Screencast on Twitch

• Collaborate with others

• Include negative results, too!

37

https://mermaid.js.org/

Next time…

• Metrics and Measurement

	Slide 1: Software Archaeology
	Slide 2: Administrivia
	Slide 3: Smoking Section
	Slide 4: Learning Goals
	Slide 5: Context: big ole pile of code
	Slide 6: Participation Activity—Part 1
	Slide 7: You will never understand the entire system!
	Slide 8: Challenge: How do I tackle this codebase?
	Slide 9: Participation Activity—Part 2
	Slide 10: Challenge: How do I tackle this codebase?
	Slide 11: Bad news: There are few helpful resources!
	Slide 12: Why? Because of Tacit Knowledge
	Slide 13: Today: How to tackle codebases
	Slide 14: Live Demonstration: tldraw
	Slide 15: Participation Activity—Part 3
	Slide 16: Steps to Understand a New Codebase
	Slide 17: My experiences (headaches) at companies
	Slide 18: Program comprehension strategies
	Slide 19: Observation: Software is full of patterns
	Slide 20: Observation: Software is massively redundant
	Slide 21: Observation: Code must run to do stuff!
	Slide 22: Observation: If code runs, it must have a beginning…
	Slide 23: Observation: If code runs, it must exist…
	Slide 25: Code must exist. But where?
	Slide 26: Can running code be Probed/Understood/Edited?
	Slide 27: Creating a model of unfamiliar code
	Slide 28: Information Gathering
	Slide 29: Static Information Gathering: Use an IDE! Real software is too complex to keep in your head
	Slide 30: Live Demonstration: tldraw
	Slide 32: Consider documentation and tutorials judiciously
	Slide 33: Discussion Boards and Issue Trackers
	Slide 34: Dynamic Information Gathering Change helps to inform and refine mental models
	Slide 35: Probes: Observe, control or “lightly” manipulate execution
	Slide 36: Step 0: Sanity check basic model + hypotheses
	Slide 37: Document and share your findings!
	Slide 38: Next time…

