
Metrics and
Measurement

17-313 Spring 2025

Foundations of Software Engineering

https://cmu-313.github.io

Michael Hilton, Austin Henley, and Nadia Nahar

https://cmu-313.github.io/

• Project 1(b) due on Thursday (Jan 23th) at midnight

• Slack:
• Great usage so far!

• Lots of great help for each other on #technicalsupport, keep up the

good work!

• Check the #technical-questions channel; chances are your

questions have been asked by others!

• As per post on Slack, you are not required to ensure your PR

removes the SonarQube issue. However, you still need to test

your change.

Administrivia

Smoking Section

•Last full row

3

Today’s Learning Goals

• Explain the importance of measurement and metrics in
Software Engineering

• Provide examples of metrics for software qualities and
process

• Apply goal-based frameworks for decision making using
metrics

• Identify the limitations and dangers of decisions and
incentives based on measurements

4

Measurement in everyday life

• Economics
• price, inflation rate, stock price, volume

• Medicine
• heart rate, blood pressure, body temperature, ECG

• Engineering
• Force, torque, heat transfer coefficient, thermal efficiency

• Natural sciences
• AQI, carbon footprint, Soil pH

“To measure is to know;
if you can not measure it,
you can not improve it”

William Thomson, Lord Kelvin

Software
Development…
before Software
Engineering

by DALL-E

Software Engineering

8

Software Engineering: Principles,
practices (technical and non-

technical) for confidently building
high-quality software.

9

What does this mean?
How do we know?

🡪 Measurement and
metrics are key concerns.

Outline

● Measurements and Metrics

● How to use measurements and metrics?

● Case study: Autonomous Vehicle Software

● Risks and challenges

● Metrics and incentives

Outline

● Measurements and Metrics

● How to use measurements and metrics?

● Case study: Autonomous Vehicle Software

● Risks and challenges

● Metrics and incentives

What is Measurement?

• Measurement is the empirical, objective assignment of numbers,
according to a rule derived from a model or theory, to attributes
of objects or events with the intent of describing them. – Craner,
Bond, “Software Engineering Metrics: What Do They Measure and How
Do We Know?”

• A quantitatively expressed reduction of uncertainty based on one
or more observations. – Hubbard, “How to Measure Anything …”

13

Software Quality Metrics

• IEEE 1061 definition: “A software quality metric is a function whose
inputs are software data and whose output is a single numerical
value that can be interpreted as the degree to which the software
possesses a given attribute that affects its quality.”

14

Entity Attribute Measurement

Quality of
Interest

Object or
Process

Method to obtain a
number or a symbol

What entities to we care about?
(examples)

• Software product

• Modules

• Software development process

• People

15

What software qualities do we care
about? (examples)

• Functionality (e.g., data
integrity)

• Scalability

• Security

• Extensibility

• Bugginess

• Documentation

• Performance

• Installability

• Availability

• Consistency

• Portability

• Regulatory compliance

16

What process qualities do we care
about? (examples)

• Development efficiency

• Meeting efficiency

• Conformance to processes

• Reliability of predictions

• Fairness in decision making

• Regulatory compliance

• On-time release

17

What people qualities do we care
about? (examples)
• Developers

• Maintainability

• Performance

• Employee satisfaction and well-being

• Communication and collaboration

• Efficiency and flow

• Satisfaction with engineering system

• Regulatory compliance

• Customers
• Satisfaction

• Ease of use

• Feature usage

• Regulatory compliance

Non-trivial qualities

• Software
• Code elegance
• Code maintainability

• Process
• Fairness in decision making

• Team
• Team collaboration
• Creativity

Make it measurable

“Measure what is measurable, and
make measurable what is not so.”

Galileo Galilei

Everything is measurable

• If X is something we care about, then X, by definition, must be
detectable.

• How could we care about things like “quality,” “risk,” “security,” or
“public image” if these things were totally undetectable, directly or
indirectly?

• If we have reason to care about some unknown quantity, it is because
we think it corresponds to desirable or undesirable results in some way.

• If X is detectable, then it must be detectable in some amount.

• If you can observe a thing at all, you can observe more of it or less of it

• If we can observe it in some amount, then it must be measurable.

21

Douglas Hubbard, How to Measure Anything, 2010

Examples:
Code Complexity

22

Lines of Code

• Easy to measure

23

> wc –l file1
file2…

LOC projects

450 Expression Evaluator

2,000 Sudoku

100,000 Apache Maven

500,000 Git

3,000,000 MySQL

15,000,000 gcc

50,000.000 Windows 10

2,000,000,000 Google (MonoRepo)

• Ignore comments and empty lines

• Ignore lines < 2 characters

• Pretty print source code first

• Count statements (logical lines of code)

• See also: cloc

24

Normalizing Lines of Code

for (i = 0; i < 100; i += 1) printf("hello"); /* How many lines of code is this? */

/* How many lines of code is this? */

for (
i = 0;
i < 100;
i += 1

) {
printf("hello");

}

Normalization by Language

Language Statement factor (productivity) Line factor

C 1 1

C++ 2.5 1

Fortran 2 0.8

Java 2.5 1.5

Perl 6 6

Smalltalk 6 6.25

Python 6 6.5 25

Source: “Code Complete: A Practical Handbook of Software Construction“, S. McConnell, Microsoft Press (2004)
and http://www.codinghorror.com/blog/2005/08/are-all-programming-languages-the-same.html u.a.

http://www.codinghorror.com/blog/2005/08/are-all-programming-languages-the-same.html

Halstead Volume

• Introduced by Maurice Howard Halstead in 1977

• Halstead Volume =
number of operators/operands *
log2(number of distinct operators/operands)

• Approximates size of elements and vocabulary

26

Cyclomatic Complexity

• Proposed by McCabe 1976

• Based on control flow graph, measures linearly
independent paths through a program
• ~= number of decisions

• Number of test cases needed to achieve branch
coverage

27

if (c1) {
f1();

} else {
f2();

}
if (c2) {

f3();
} else {

f4();
}

M = edges of CFG – nodes of CFG + 2*connected
components

“For each module, either limit cyclomatic complexity to [X] or
provide a written explanation of why the limit was exceeded.”

– NIST Structured Testing methodology

Object-Oriented Metrics

• Number of Methods per Class

• Depth of Inheritance Tree

• Number of Child Classes

• Coupling between Object Classes

• Calls to Methods in Unrelated Classes

• …
28

Outline

● Measurements and Metrics

● How to use measurements and metrics?

● Case study: Autonomous Vehicle Software

● Risks and challenges

● Metrics and incentives

Goal-based frameworks

“Every measurement action must be
motivated by a particular goal or need
that is clearly defined and easily
understandable.”

Measurement must be defined in a
top-down fashion.

Software Metrics: A Rigorous and Practical Approach. N.Fenton, J.Bieman

The GQM framework

Goal: What do you want to achieve?

Questions: What do you need to answer
to know whether your goal is met?

Metrics: What measurements do you
need in order to answer each question?

GQM: Defining Goals

P: Purpose (improve, evaluate, monitor, …)

I: Issue (reliability, usability, effectiveness, …)

O: Object (final product, component, process, activity)

V: Viewpoint (any stakeholder)

Evaluate the effectiveness of the organization’s coding
standard from the team’s perspective

Goal:

Questions: How comprehensible are
the coding standards?

What is the impact of coding
standards on the efficiency and
productivity of the team?

Survey results
measuring team
members'
understanding

Metrics: Number of
revisions required
to achieve
standard
compliance

Code size: LOC,
number of classes,
number of
functions

Measurement for Decision Making

• Fund project?

• More testing?

• Fast enough? Secure enough?

• Code quality sufficient?

• Which feature to focus on?

• Developer bonus?

• Time and cost estimation? Predictions reliable?
35

Trend analyses

36

• Monitor many projects or many modules, get typical values
for metrics

• Report deviations

37

Benchmarking against standards

Outline

● Measurements and Metrics

● How to use measurements and metrics?

● Case study: Autonomous Vehicle Software

● Risks and challenges

● Metrics and incentives

AV Software is ________________________

40

By what metrics can we judge AV
software (e.g., safety)?

41

(1) Code coverage

• Amount of code executed
during testing.

• Statement coverage, line
coverage, branch coverage,
etc.

• E.g., 75% branch coverage
🡪 3/4 if-else outcomes have
been executed 42

(2) Model Accuracy

• Train machine-learning
models on labelled data
(sensor data + ground
truth).

• Compute accuracy on a
separate labelled test set.

• E.g., 90% accuracy implies
that object recognition is
right for 90% of the test
inputs.

43

Source: Peng et al. ESEC/FSE’20

(3) Failure Rate

• Frequency of crashes /
fatalities

• Per 1,000 rides, per million
miles, per month (in the
news)

44

(4) Mileage

45
Source: waymo.com/safety (September 2021)

Participation Activity
• Apply the Goal-Question-Metric

framework to explore various
aspects of AV software

• Define one goal, two questions,
and at least one metric per
question

• Write it down on a piece of paper
with your Andrew ID(s) on it.

• You can work in groups of 2-3.

• Share with the class!

• Software

• Test coverage

• Model accuracy

• Size of codebase

• Age of codebase

• Software Process

• Time since the most recent change

• Frequency of code releases

• Number of emails sent during development

• Contributors

• Number of contributors

• Age of contributors

• Employee satisfaction of contributors

• Documentation

• Amount of code documentation

• Application

• Customer satisfaction

• Mileage

• Crash/kill rate

Example

Goal: Ensure energy efficiency and sustainability from the point of view of the
organization and environmental analysts

Question 1: What is the vehicle's energy consumption under different driving

conditions?

Metrics: Kilowatt-hours per 100 kilometers under city, highway, and mixed

driving conditions.

Question 2: How efficient is the battery management system?

Metrics: Battery life, number of charge cycles

Outline

● Measurements and Metrics

● How to use measurements and metrics?

● Case study: Autonomous Vehicle Software

● Risks and challenges

● Metrics and incentives

49

The streetlight effect

• A known observational bias.

• People tend to look for something
only where it’s easiest to do so.
• If you drop your keys at night, you’ll

tend to look for it under streetlights.

50

Bad statistics: What could possibly go
wrong?

51

Making inferences

• To infer causation:
• Provide a theory (from domain knowledge, independent of data)

• Show correlation

• Demonstrate ability to predict new cases (replicate/validate)

52

http://xkcd.com/552
/

Spurious Correlations

53

Confounding variables

• If you look only at the coffee
consumption → cancer relationship,
you can get very misleading results

• Smoking is a confounder

54

55

“We found that there is a low to moderate correlation between
coverage and effectiveness when the number of test cases in the
suite is controlled for.”

Most studies did not account for the confounding influence of test suite size

• Extent to which a measurement yields similar results when applied

multiple times

• Goal is to reduce uncertainty, increase consistency

• Example: Performance

• Time, memory usage

• Cache misses, I/O operations, instruction execution count, etc.

• Law of large numbers

• Taking multiple measurements to reduce error

• Trade-off with cost

56

Measurement reliability

57

McNamara fallacy

• Measure whatever can be easily measured.

• Disregard that which cannot be measured easily.

• Presume that which cannot be measured easily is not important.

• Presume that which cannot be measured easily does not exist.

58

https://chronotopeblog.com/2015/04/04/the-mcnamara-fallacy-and-the-problem-with-numbers-in-education/

5
9

Survivorship bias

Outline

● Measurements and Metrics

● How to use measurements and metrics?

● Case study: Autonomous Vehicle Software

● Risks and challenges

● Metrics and incentives

http://dilbert.com/strips/comic/1995-11-13/

Goodhart’s law: “When a measure becomes
a target, it ceases to be a good measure.”

61

6
2

Incentivizing Productivity

• What happens when developer bonuses are based on

• Lines of code per day?

• Amount of documentation written?

• Low number of reported bugs in their code?

• Low number of open bugs in their code?

• High number of fixed bugs?

• Accuracy of time estimates?
63

64

What you need to know

Metrics are important in
Software Engineering

Apply goal-oriented
approaches to software
metrics

Provide examples of
metrics for software
qualities and process

Understand limitations
and dangers of decisions
and incentives based on
measurements

Questions to consider (Projects)

• What properties do we care about and how do we measure
them?

• What is being measured? Does it (to what degree) capture
the thing you care about? What are its limitations?

• How should it be incorporated into process?

• What are potentially negative side effects or incentives?
65

	Slide 1: Metrics and Measurement
	Slide 2: Administrivia
	Slide 3: Smoking Section
	Slide 4: Today’s Learning Goals
	Slide 5: Measurement in everyday life
	Slide 6: “To measure is to know; if you can not measure it, you can not improve it”
	Slide 7: Software Development… before Software Engineering
	Slide 8: Software Engineering
	Slide 9: Software Engineering: Principles, practices (technical and non-technical) for confidently building high-quality software.
	Slide 10: Outline
	Slide 11: Outline
	Slide 13: What is Measurement?
	Slide 14: Software Quality Metrics
	Slide 15: What entities to we care about? (examples)
	Slide 16: What software qualities do we care about? (examples)
	Slide 17: What process qualities do we care about? (examples)
	Slide 18: What people qualities do we care about? (examples)
	Slide 19: Non-trivial qualities
	Slide 20: Make it measurable
	Slide 21: Everything is measurable
	Slide 22: Examples: Code Complexity
	Slide 23: Lines of Code
	Slide 24: Normalizing Lines of Code
	Slide 25: Normalization by Language
	Slide 26: Halstead Volume
	Slide 27: Cyclomatic Complexity
	Slide 28: Object-Oriented Metrics
	Slide 29: Outline
	Slide 31: Goal-based frameworks
	Slide 32: The GQM framework
	Slide 33: GQM: Defining Goals
	Slide 34
	Slide 35: Measurement for Decision Making
	Slide 36: Trend analyses
	Slide 37: Benchmarking against standards
	Slide 38: Outline
	Slide 40: AV Software is ________________________
	Slide 41: By what metrics can we judge AV software (e.g., safety)?
	Slide 42: (1) Code coverage
	Slide 43: (2) Model Accuracy
	Slide 44: (3) Failure Rate
	Slide 45: (4) Mileage
	Slide 46: Participation Activity
	Slide 47: Example
	Slide 48: Outline
	Slide 49
	Slide 50: The streetlight effect
	Slide 51: Bad statistics: What could possibly go wrong?
	Slide 52: Making inferences
	Slide 53: Spurious Correlations
	Slide 54: Confounding variables
	Slide 55
	Slide 56: Measurement reliability
	Slide 57
	Slide 58: McNamara fallacy
	Slide 59: Survivorship bias
	Slide 60: Outline
	Slide 61: Goodhart’s law: “When a measure becomes a target, it ceases to be a good measure.”
	Slide 62
	Slide 63: Incentivizing Productivity
	Slide 64: What you need to know
	Slide 65: Questions to consider (Projects)

