
Metrics and
Measurement

17-313 Fall 2024

Foundations of Software Engineering

https://cmu-313.github.io

Michael Hilton and Rohan Padhye

https://cmu-313.github.io/

• Project 1(b) due on Thursday (Sep 5th) at midnight

• Slack: Great usage of #technical-support-channel so far!

• Project 2 will be released tonight.

• P2 onwards will be team projects! Teams at the end of class.

• P2A due next Thursday, Sep 12th. Some topics (Kanban, user stories)

will be covered next Tuesday, Sep 10th.

Administrivia

Smoking Section

•Last full row

3

Today’s Learning Goals

• Explain the importance of measurement and metrics in
Software Engineering

• Provide examples of metrics for software qualities and
process

• Apply goal-based frameworks for decision making using
metrics

• Identify the limitations and dangers of decisions and
incentives based on measurements

4

Measurement in everyday life

• Economics
• price, inflation rate, stock price, volume

• Medicine
• heart rate, blood pressure, body temperature, ECG

• Engineering
• Force, torque, heat transfer coefficient, thermal efficiency

• Natural sciences
• AQI, carbon footprint, Soil pH

“To measure is to know;
if you can not measure it,
you can not improve it”

William Thomson, Lord Kelvin

Software
Development…
before Software
Engineering

by DALL-E

Software Engineering

8

Software Engineering: Principles,
practices (technical and non-

technical) for confidently building
high-quality software.

9

What does this mean? How do
we know?

Measurement and metrics are
key concerns.

Outline

● Measurements and Metrics

● How to use measurements and metrics?

● Case study: Autonomous Vehicle Software

● Risks and challenges

● Metrics and incentives

Outline

● Measurements and Metrics

● How to use measurements and metrics?

● Case study: Autonomous Vehicle Software

● Risks and challenges

● Metrics and incentives

What is Measurement?

• Measurement is the empirical, objective assignment of numbers,
according to a rule derived from a model or theory, to attributes
of objects or events with the intent of describing them. – Craner,
Bond, “Software Engineering Metrics: What Do They Measure and How
Do We Know?”

• A quantitatively expressed reduction of uncertainty based on one
or more observations. – Hubbard, “How to Measure Anything …”

13

Software Quality Metrics

• IEEE 1061 definition: “A software quality metric is a function whose
inputs are software data and whose output is a single numerical
value that can be interpreted as the degree to which the software
possesses a given attribute that affects its quality.”

14

Entity Attribute Measurement

Quality of
Interest

Object or
Process

Method to obtain a
number or a symbol

What entities to we care about?
(examples)

• Software product

• Modules

• Software development process

• People

15

What software qualities do we care
about? (examples)

• Functionality (e.g., data
integrity)

• Scalability

• Security

• Extensibility

• Bugginess

• Documentation

• Performance

• Installability

• Availability

• Consistency

• Portability

• Regulatory compliance

16

What process qualities do we care
about? (examples)

• Development efficiency

• Meeting efficiency

• Conformance to processes

• Reliability of predictions

• Fairness in decision making

• Regulatory compliance

• On-time release

17

What people qualities do we care
about? (examples)
• Developers

• Maintainability

• Performance

• Employee satisfaction and well-being

• Communication and collaboration

• Efficiency and flow

• Satisfaction with engineering system

• Regulatory compliance

• Customers
• Satisfaction

• Ease of use

• Feature usage

• Regulatory compliance

Non-trivial qualities

• Software
• Code elegance
• Code maintainability

• Process
• Fairness in decision making

• Team
• Team collaboration
• Creativity

20

McNamara fallacy

• Measure whatever can be easily measured.

• Disregard that which cannot be measured easily.

• Presume that which cannot be measured easily is not important.

• Presume that which cannot be measured easily does not exist.

21

https://chronotopeblog.com/2015/04/04/the-mcnamara-fallacy-and-the-problem-with-numbers-in-education/

Make it measurable

“Measure what is measurable, and
make measurable what is not so.”

Galileo Galilei

Everything is measurable

• If X is something we care about, then X, by definition, must be
detectable.

• How could we care about things like “quality,” “risk,” “security,” or
“public image” if these things were totally undetectable, directly or
indirectly?

• If we have reason to care about some unknown quantity, it is because
we think it corresponds to desirable or undesirable results in some way.

• If X is detectable, then it must be detectable in some amount.

• If you can observe a thing at all, you can observe more of it or less of it

• If we can observe it in some amount, then it must be measurable.

23

Douglas Hubbard, How to Measure Anything, 2010

Examples:
Code Complexity

24

Code Complexity: Lines of Code

• Easy to measure

25

> wc –l file1 file2…

LOC projects

450 Expression Evaluator

2,000 Sudoku

100,000 Apache Maven

500,000 Git

3,000,000 MySQL

15,000,000 gcc

50,000.000 Windows 10

2,000,000,000 Google (MonoRepo)

Code Complexity: Halstead Volume

• Introduced by Maurice Howard Halstead in 1977

• Halstead Volume =
number of operators/operands *
log2(number of distinct operators/operands)

• Approximates size of elements and vocabulary

28

Code Complexity: Cyclomatic Complexity

• Proposed by McCabe 1976

• Based on control flow graph, measures linearly
independent paths through a program
• ~= number of decisions

• Number of test cases needed to achieve branch
coverage

29

if (c1) {
f1();

} else {
f2();

}
if (c2) {

f3();
} else {

f4();
}

M = edges of CFG – nodes of CFG + 2*connected
components

“For each module, either limit cyclomatic complexity to [X] or
provide a written explanation of why the limit was exceeded.”

– NIST Structured Testing methodology

Code Complexity: Object-Oriented Metrics

• Number of Methods per Class

• Depth of Inheritance Tree

• Number of Child Classes

• Coupling between Object Classes

• Calls to Methods in Unrelated Classes

• …
30

• Mentioned in a talk by Jinnah
Hossein, Boeing (formerly
SpaceX) at CMU

• More complex the software
task ==> consumes bigger part
of the mass budget (in grams)

• Keeps the software from
growing unconstrained and
ensuring maintainability and
quality by existing staff

Code Complexity: “Allowable mass” proxy

Outline

● Measurements and Metrics

● How to use measurements and metrics?

● Case study: Autonomous Vehicle Software

● Risks and challenges

● Metrics and incentives

A Goal-based Framework

Goal: What do you want to achieve?

Questions: What do you need to answer
to know whether your goal is met?

Metrics: What measurements do you
need in order to answer each question?

“Every measurement action must be motivated by a
particular goal or need that is clearly defined and easily
understandable.”

Software Metrics: A Rigorous and Practical Approach. N.Fenton, J.Bieman

GQM: Defining Goals

P: Purpose (improve, evaluate, monitor, …)

I: Issue (reliability, usability, effectiveness, …)

O: Object (final product, component, process, activity)

V: Viewpoint (any stakeholder)

Evaluate the effectiveness of the organization’s coding
standard from the team’s perspective

Goal:

Questions: How comprehensible are
the coding standards?

What is the impact of coding
standards on the efficiency and
productivity of the team?

Survey results
measuring team
members'
understanding

Metrics: Number of
revisions required
to achieve
standard
compliance

Code size: LOC,
number of classes,
number of
functions

Monitor the performance of the web server to enable the
ops team to make decisions

Goal:

Questions: How quickly can users
complete their tasks?

How many concurrent users can
we support?

Average latency per
request in
milliseconds

Metrics: Throughput:
Number of
requests served
per second

Peak memory
consumption, as a
% of max available

Measurement for Decision Making

• Fund project?

• More testing?

• Fast enough? Secure enough?

• Code quality sufficient?

• Which feature to focus on?

• Developer bonus?

• Time and cost estimation? Predictions reliable?
39

Trend analyses

40

• Monitor many projects or many modules, get typical values
for metrics

• Report deviations

41

Benchmarking against standards

Outline

● Measurements and Metrics

● How to use measurements and metrics?

● Case study: Autonomous Vehicle Software

● Risks and challenges

● Metrics and incentives

By what metrics can we judge AV
software (e.g., safety)?

44

(1) Code coverage

• Amount of code executed
during testing.

• Statement coverage, line
coverage, branch coverage,
etc.

• E.g., 75% branch coverage
🡪 3/4 if-else outcomes have
been executed 45

(2) Model Accuracy

• Train machine-learning
models on labelled data
(sensor data + ground
truth).

• Compute accuracy on a
separate labelled test set.

• E.g., 90% accuracy implies
that object recognition is
right for 90% of the test
inputs.

46

Source: Peng et al. ESEC/FSE’20

(3) Failure Rate

• Frequency of crashes /
fatalities

• Per 1,000 rides, per million
miles, per month (in the
news)

47

(4) Mileage

48
Source: waymo.com/safety (September 2021)

Participation Activity
• You can work in groups of 3.
• Apply the Goal-Question-Metric

framework to explore various
aspects of AV software

• Define one goal, two questions,
and at least one metric per
question

• Write it down on a piece of paper
with your Andrew ID(s) on it.

• Share with the class!

• Software

• Test coverage

• Model accuracy

• Size of codebase

• Age of codebase

• Software Process

• Time since the most recent change

• Frequency of code releases

• Number of emails sent during development

• Contributors

• Number of contributors

• Age of contributors

• Employee satisfaction of contributors

• Documentation

• Amount of code documentation

• Application

• Customer satisfaction

• Mileage

• Crash/kill rate

Example

Goal: Ensure energy efficiency and sustainability from the point of view of the
organization and environmental analysts

Question 1: What is the vehicle's energy consumption under different driving

conditions?

Metrics: Kilowatt-hours per 100 kilometers under city, highway, and mixed

driving conditions.

Question 2: How efficient is the battery management system?

Metrics: Battery life in miles, number of charge cycles

Outline

● Measurements and Metrics

● How to use measurements and metrics?

● Case study: Autonomous Vehicle Software

● Risks and challenges

● Metrics and incentives

52

The streetlight effect

• A known observational bias.

• People tend to look for something
only where it’s easiest to do so.
• If you drop your keys at night, you’ll

tend to look for it under streetlights.

53

Bad statistics: What could possibly go wrong?

54

Making inferences

• To infer causation:
• Provide a theory (from domain knowledge, independent of data)

• Show correlation

• Demonstrate ability to predict new cases (replicate/validate)

55

http://xkcd.com/552
/

Spurious Correlations

56

Spurious Correlations: Confounding variables

• If you look only at the coffee
consumption → cancer relationship,
you can get very misleading results

• Smoking is a confounder

57

Spurious Correlations: Berkson’s Paradox

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Bug Complexity vs. Impact

Spurious Correlations: Berkson’s Paradox

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Bug Complexity vs. Impact

6
1

Survivorship bias

• Extent to which a measurement yields similar results when applied
multiple times

• Goal is to reduce uncertainty, increase consistency

• Example: Performance

• Time, memory usage

• Cache misses, I/O operations, instruction execution count, etc.

• Law of large numbers

• Taking multiple measurements to reduce error

• Trade-off with cost

62

Measurement reliability

Outline

● Measurements and Metrics

● How to use measurements and metrics?

● Case study: Autonomous Vehicle Software

● Risks and challenges

● Metrics and incentives

http://dilbert.com/strips/comic/1995-11-13/

Goodhart’s law: “When a measure becomes
a target, it ceases to be a good measure.”

64

6
5

Incentivizing Productivity

• What happens when developer bonuses are based on

• Lines of code per day?

• Amount of documentation written?

• Low number of reported bugs in their code?

• Low number of open bugs in their code?

• High number of fixed bugs?

• Accuracy of time estimates?
66

67

What you need to know

Metrics are important in
Software Engineering

Apply goal-oriented
approaches to software
metrics

Provide examples of
metrics for software
qualities and process

Understand limitations
and dangers of decisions
and incentives based on
measurements

	Slide 1: Metrics and Measurement
	Slide 2: Administrivia
	Slide 3: Smoking Section
	Slide 4: Today’s Learning Goals
	Slide 5: Measurement in everyday life
	Slide 6: “To measure is to know; if you can not measure it, you can not improve it”
	Slide 7: Software Development… before Software Engineering
	Slide 8: Software Engineering
	Slide 9: Software Engineering: Principles, practices (technical and non-technical) for confidently building high-quality software.
	Slide 10: Outline
	Slide 11: Outline
	Slide 13: What is Measurement?
	Slide 14: Software Quality Metrics
	Slide 15: What entities to we care about? (examples)
	Slide 16: What software qualities do we care about? (examples)
	Slide 17: What process qualities do we care about? (examples)
	Slide 18: What people qualities do we care about? (examples)
	Slide 19: Non-trivial qualities
	Slide 20
	Slide 21: McNamara fallacy
	Slide 22: Make it measurable
	Slide 23: Everything is measurable
	Slide 24: Examples: Code Complexity
	Slide 25: Code Complexity: Lines of Code
	Slide 28: Code Complexity: Halstead Volume
	Slide 29: Code Complexity: Cyclomatic Complexity
	Slide 30: Code Complexity: Object-Oriented Metrics
	Slide 31: Code Complexity: “Allowable mass” proxy
	Slide 32: Outline
	Slide 35: A Goal-based Framework
	Slide 36: GQM: Defining Goals
	Slide 37
	Slide 38
	Slide 39: Measurement for Decision Making
	Slide 40: Trend analyses
	Slide 41: Benchmarking against standards
	Slide 42: Outline
	Slide 44: By what metrics can we judge AV software (e.g., safety)?
	Slide 45: (1) Code coverage
	Slide 46: (2) Model Accuracy
	Slide 47: (3) Failure Rate
	Slide 48: (4) Mileage
	Slide 49: Participation Activity
	Slide 50: Example
	Slide 51: Outline
	Slide 52
	Slide 53: The streetlight effect
	Slide 54: Bad statistics: What could possibly go wrong?
	Slide 55: Making inferences
	Slide 56: Spurious Correlations
	Slide 57: Spurious Correlations: Confounding variables
	Slide 58: Spurious Correlations: Berkson’s Paradox
	Slide 59: Spurious Correlations: Berkson’s Paradox
	Slide 61: Survivorship bias
	Slide 62: Measurement reliability
	Slide 63: Outline
	Slide 64: Goodhart’s law: “When a measure becomes a target, it ceases to be a good measure.”
	Slide 65
	Slide 66: Incentivizing Productivity
	Slide 67: What you need to know

