
Project Planning

17-313: Foundations of Software Engineering

https://cmu-313.github.io

Josh Sunshine and Michael Hilton

Spring 2026

https://cmu-313.github.io/
https://cmu-313.github.io/
https://cmu-313.github.io/

Smoking Section

• Last full row

2

Administrivia

• Some teams might have to be re-balanced, we will be in touch

• Project 2A:

• Team Planning and Process

• Due: Friday, Jan 30

• Extra Credit: go out for an activity

Project 1: Retrospective

P1: Retrospective (1/3)

• You had to fork, build, and test an unseen codebase
• gained experience with lots of tools you will use throughout the semester

• had to work some tricky setup issues

• you should now have a good foundation for P2

• You had to change the code to remove a code smell
• some changes were harder to make than others

• API changes → need to change all API uses

• did you use AI to help you fix the smell? (this was OK!)

P1: Retrospective (2/3)

• Verifying those changes is much harder!
• did you break something? are you confident?

• what assurances do you have?

• You used code archaeology to find out how to exercise them 🪏
• added probes to find out what code is being executed (e.g., console.log)

• used code search to work backwards from code to frontend HTML

• some issues were very difficult to trigger! did you swap to another one?

P1: Retrospective (3/3)

• You fixed the issue, but did you really fix the issue?
• did you introduce more problems into the code? extraneous changes?

• should you have fixed the issue? was it even an issue to begin with?

• did you make changes to appease the linter?

• If I merge every PR, would the codebase be better?
• how do I review these PRs?

• how do I make PRs that are more likely to be accepted?

• is there a better way to confidently make large changes?

Today’s Learning Goals

• Recognize the importance of process

• Identify why software development has project
characteristics

• Understand the elements of Scrum

• Create and evaluate user stories

• Use milestones for planning and progress measurement

• Understand the difficulty of measuring progress
8

9

Software Process
“The set of activities and associated results that produce a software product”

Sommerville, SE, ed. 8

Software Engineering: Principles,
practices (technical and non-

technical) for confidently building
high-quality software.

What does this mean?
What else can we do apart

from coding?
Processes are key

concerns.

How to develop software???

Discuss the
software that
needs to be

written

Write some
code

Test the code
to identify the

defects

Debug to find
causes of
defects

Fix the defects

What does a software engineer’s day look
like?

• How many hours do
they spend in
meetings, coding,
testing, debugging,
etc.?

Percent

of

Effort

TimeProject

beginning

Project

end

100%

0%

Productive Development

(coding, testing, making progress

towards goals)

Idealized?

1
7

Percent

of

Effort

TimeProject

beginning

Project

end

100%

0%

Addressing Issues

Productive Development

(coding, testing, making progress

towards goals)

Idealized?

What happens when …

• Uncontrolled Scope Creep: Informal agreements balloon the
project scope by 25-50%.

• Late Failure: Critical requirement and design flaws are
discovered only during final testing.

• Lost Defects: Informal bug tracking (emails/hallway chats)
leads to forgotten fixes.

• Code Chaos: Lack of version control leads to overwritten files
and lost work.

Percent

of

Effort

TimeProject

beginning

Project

end

100%

0%

 Process

Productive Development

(coding, testing, making progress

towards goals)

Fighting Fires / Addressing Issues

Let’s improve the reliability of this
process

• Writing down all requirements
• Review requirements
• Require approval for all changes to requirements

• Use version control for all changes
• Code Reviews

• Track all work items
• Break down development into smaller tasks
• Write down and monitor all reported bugs
• Hold regular, frequent status meetings

• Plan and conduct quality assurance
• Employ a DevOps framework to push code between developers and

operations

2
1

Percent

of

Effort

TimeProject

beginning

Project

end

100%

0%

Addressing Issues

Process: Cost and Time estimates, Writing Requirements, Design,

Change Management, Quality Assurance Plan, Version Control,

Development and Integration Plan, Status Meetings

Productive Development

(coding, testing, making progress

towards goals)

Negative
View of
Process

2
2

Percent

of

Effort

TimeProject

beginning

Project

end

100%

0%
Process

Hypothesis: Process

increases flexibility and

efficiency

Ideal Curve: Upfront

investment for later

greater returns

Productive Development

(coding, testing, making progress

towards goals)

Fighting Fires / Addressing Issues

2
3

Waterfall model was the original
software process

2
4

Waterfall diagram CC-BY 3.0 Paulsmith99 at en.wikipedia

https://en.wikipedia.org/wiki/User:Paulsmith99
https://en.wikipedia.org/

… akin to processes pioneered in mass
manufacturing (e.g., by Ford)

2
5

What could go wrong?

2
6

Waterfall diagram CC-BY 3.0 Paulsmith99 at en.wikipedia

I don’t
like it…

https://en.wikipedia.org/wiki/User:Paulsmith99
https://en.wikipedia.org/wiki/User:Paulsmith99
https://en.wikipedia.org/

Agile manifesto

“We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.”

https://agilemanifesto.org/

Agile manifesto

Twelve high-level principles, examples include:

• “Our highest priority is to satisfy the customer through early and
continuous delivery of valuable software.”

• “Working software is the primary measure of progress”

• “Continuous attention to technical excellence and good design
enhances agility.”

• “Simplicity—the art of maximizing the amount of work not done—is
essential.”

Scrum
(Only a brief intro)

3
4

Elements of Scrum

Products:
Product Backlog

Sprint Backlog

Process:

Sprint Planning Meeting
Daily Scrum Meeting

Sprint Retrospective
Sprint Review Meeting

Backlogs

The product backlog is all the features for the product
The sprint backlog is all the features that will be worked on
for that sprint. These should be broken down into discrete

tasks:
Fine-grained

Estimated

Assigned to individual team members

Acceptance criteria should be defined

User Stories are often used

3
6

Kanban boards

3
7

Scrum Meetings

Sprint Planning Meeting
Entire Team decides together what to tackle for that sprint

Daily Scrum Meeting
Quick Meeting to touch base on :

What have I done? What am I doing next? What am I stuck on/need help?

Sprint Retrospective
Review sprint process

Sprint Review Meeting
Review Product

3
8

Standups

User stories

• Plan using units of customer-visible functionality

Example

User Stories

4
2

Source: http://one80services.com/user-stories/writing-good-user-

stories-hint-its-not-about-writing/

User story cards (3”x5”)

“As a [role], I want [function], so that [value]”

Conversation

• Developers, product managers, etc.
• Is it clear to everyone?
• What must a developer do to implement this

user story?

Acceptance criteria

• How can we tell that the user story has been achieved?

• It’s easy to tell when the developer finished the code.

• But, how do you tell that the customer is happy?

Example

The university is looking to enhance student and staff engagement

by creating an online platform where all university-related events

are easily accessible. The goal is to provide a user-friendly website

that serves as a central hub for information on various activities,

ranging from academic seminars to sports events and club

meetings.

“As a [role], I want [function], so that [value]”

Participation activity: write a user story

• Project to consider: university event website introduced on
previous slide

• Write one story on the paper we give you

• Keep it and we’ll revisit it later in the lecture

How to evaluate user story?

4
8

Source: http://one80services.com/user-stories/writing-good-user-

stories-hint-its-not-about-writing/

Independent

• Schedule in any order.

• Not always possible

4
9

Counterexample

As a student, I want to receive notifications for events that are about to

start, for those I have shown interest in, so I don't miss them.

Acceptance Criteria:

• An option is provided to 'Set a Reminder' for each event.

• Notifications are sent to users who have opted for reminders,

shortly before the event starts.

Assume that the
homepage with an
event calendar is
already in place.

Negotiable

• Details to be negotiated during development

• Good Story captures the essence, not the details

Counterexample

As a student, I want to view the upcoming events at the university, so I

can decide which ones to attend.

Acceptance Criteria:

• Add an interactive grid layout of upcoming events at the top of the

homepage.

• Each event card in the grid is visible for a 2 seconds before

automatically rotating to display the next set of events.

• Each card in the grid includes the event's name, type (e.g., seminar,

sports game), duration, a brief description, and scheduled times.

• This grid of events is displayed under a prominent H1 heading that

reads “Discover What’s Happening on Campus!”

Valuable

• This story needs to have value to someone (hopefully the

customer)

• Easy to forget why you are doing what you are doing

5
3

Counterexample

As the Events Coordinator, I want a database to store details of students

and staff interested in university events.

Acceptance Criteria:

• A database is constructed to manage user information.

• The database stores details such as name, email, phone number,

favorite event types, date of birth, and history of event attendance

or registrations.

Estimable

• Helps keep the size small

• It should provide enough details to estimate the amount

of effort needed

• More on estimates later…

5
5

Counterexample

As an undergraduate student, I want to be able to filter university events,

so I can choose the ones that align with my interests.

Acceptance Criteria:

• Filters are added to the event listings on the website.

Small

• Fit on 3x5 card

• At most two person-weeks of work (one sprint)

• Too big == unable to estimate

5
7

Counterexample

As a student, I want to easily find information about upcoming events, so

I can participate in activities that interest me.

Acceptance criteria:

• A homepage is created displaying the university's name, motto,

location, email, and contact information.

• The homepage features a calendar of upcoming university events.

• The event calendar includes details such as the event title, type (e.g.,

seminar, sports game, club meeting), a brief description, location,

date, and time.

• Users can filter the event list by event type, date, and hosting

department or club.

• The admin can update the event calendar as new events are

planned or existing events are modified.

Testable

• Ensures understanding of task

• We know when we can mark task “Done”

• Unable to test == do not understand

5
9

Counterexample

As a student, I want to easily view promotional videos or trailers of

university events, so I can decide which events to attend.

Acceptance Criteria:

• Promotional videos can be embedded on each event detail page.

• Videos are of high quality.

• The embedded video is well-integrated into the page design.

• The video size is large enough to ensure clarity.

• The video controls are user-friendly.

Activity: Evaluate using INVEST

6
1

“Plans are nothing,

planning is everything”
-Dwight D. Eisenhower

6
5

Time estimation

https://xkcd.com/1658/

6
6

Time estimation

https://xkcd.com/612

/

Improving Time Estimates

• Prevent conformity bias

• Do you have a comparable experience to base an estimate on?

• How much design do you need for each task?

• Break down the task into smaller tasks and estimate them.

6
8

Wisdom of the Crowd

69

7
0

72

Hofstadter’s Law

“It always takes longer than you expect, even when you take into
account Hofstadter’s Law”

Is Estimation Evil?

Ron Jeffries's essay Estimation is Evil

https://ronjeffries.com/articles/021-01ff/estimation-is-evil/

Milestones and deliverables make
progress observable

Milestone: clear end point of a (sub)tasks
• For project manager

• Reports, prototypes, completed subprojects

• "80% done" is not a suitable milestone

Deliverable: Result for customer
• Similar to milestones, but for customers

• Reports, prototypes, completed subsystems

7
5

What you need to know

• Recognize the importance of having a software process

• Main ideas of Agile/Scrum

• Understand backlogs and user stories

• Understand the difficulty of estimating tasks and progress

• We use milestones for planning and progress

measurement

7
6

	Slide 1: Project Planning
	Slide 2: Smoking Section
	Slide 3: Administrivia
	Slide 4: Project 1: Retrospective
	Slide 5: P1: Retrospective (1/3)
	Slide 6: P1: Retrospective (2/3)
	Slide 7: P1: Retrospective (3/3)
	Slide 8: Today’s Learning Goals
	Slide 9
	Slide 10: Software Process
	Slide 13: Software Engineering: Principles, practices (technical and non-technical) for confidently building high-quality software.
	Slide 14: How to develop software???
	Slide 15: What does a software engineer’s day look like?
	Slide 16
	Slide 17
	Slide 18: What happens when …
	Slide 19
	Slide 20: Let’s improve the reliability of this process
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Waterfall model was the original software process
	Slide 25: … akin to processes pioneered in mass manufacturing (e.g., by Ford)
	Slide 26: What could go wrong?
	Slide 30
	Slide 31: Agile manifesto
	Slide 32: Agile manifesto
	Slide 34: Scrum
	Slide 35: Elements of Scrum
	Slide 36: Backlogs
	Slide 37: Kanban boards
	Slide 38: Scrum Meetings
	Slide 39: Standups
	Slide 40: User stories
	Slide 41: Example
	Slide 42: User Stories
	Slide 43: User story cards (3”x5”) “As a [role], I want [function], so that [value]”
	Slide 44: Conversation
	Slide 45: Acceptance criteria
	Slide 46: Example
	Slide 47: Participation activity: write a user story
	Slide 48: How to evaluate user story?
	Slide 49: Independent
	Slide 50: Counterexample
	Slide 51: Negotiable
	Slide 52: Counterexample
	Slide 53: Valuable
	Slide 54: Counterexample
	Slide 55: Estimable
	Slide 56: Counterexample
	Slide 57: Small
	Slide 58: Counterexample
	Slide 59: Testable
	Slide 60: Counterexample
	Slide 61: Activity: Evaluate using INVEST
	Slide 64: “Plans are nothing, planning is everything” -Dwight D. Eisenhower
	Slide 65: Time estimation
	Slide 66: Time estimation
	Slide 68: Improving Time Estimates
	Slide 69: Wisdom of the Crowd
	Slide 70
	Slide 71
	Slide 72
	Slide 73: Hofstadter’s Law
	Slide 74: Is Estimation Evil?
	Slide 75: Milestones and deliverables make progress observable
	Slide 76: What you need to know

