
Software Teams and 
Communication

17-313 Spring 2025

Foundations of Software Engineering

https://cmu-313.github.io

Michael Hilton, Austin Henley, and Nadia Nahar

https://cmu-313.github.io/


Administrivia

• P2A due Today

• Extra credit: Go out with your teams socially. 
• Share a photo/screenshot of your team activity with your TA 

mentors before tonight.



Happy Lunar New Year!



4



Learning Goals

• Describe the pros and cons of working as a team

• Recognize the importance of communication in collaboration

• Recognize the need of having multiple communication 
channels

• Select an appropriate communication tool for a given 
communication goal

• Ask technical questions effectively

• Write clear and specific Github issues, pull requests, and 
comments



6



We all work in a team

Bubble Sort Monopoly Game

https://www.productplan.com/glossary/bubble-sort/

https://www.amazon.com/Monopoly-Classic-Replacement-Board-Hasbro/dp/B00DOZ2IBM

Scooter App

NodeBB Autonomous Vehicle

https://www.forbes.com/sites/bernardmarr/2020/07/ 17/5-ways-self-driving-cars-could-make-our-world-and-our-lives-better/

Https://dribbble.com/shots/12512417-Scooter-Rental-App/

https://teedy.io/en/#!/



We all work in a team

17-313
Instructors, TAs, 

Classmates

Recitation and 
Mentor TAs

Your Team

You



We all work in a team

17-313
Instructors, TAs, 

Classmates

Recitation and 
Mentor TAs

Your Team

You

Open Source



Working solo vs. as a team

vectorstock.com/23988884



Working as a team 

• Design & implement software
• Establish a collaboration process

• Meet with the team

• Choose a leader

• Divide work and integrate

• Share knowledge

• Resolve conflicts



Stages of Team Formation

Tuckman, B. W. (1965). Developmental sequence in small groups. Psychological Bulletin, 63, 384-399.

Forming Storming Norming Performing

Emotion

Performance



Norming

• When working with someone who is remote, how do you like to work together?

• How do you manage your time when you get busy with a lot of tasks?

• How do you feel about chatting by text message, audio call, video call?

• Exchange phone numbers with your project partner(s) in case your Internet goes out and you 
still want to work on the project together.

• Negotiate when you can work on the project together outside of class.

• Have you had a positive prior teaming experience?

• How often did your team meet?

• Did your team have a leader? If yes, what did that leader do?

• What was your role on the team?

• How well did you get along with your teammates related to work, or related to non-work?







Establish a collaboration 
process





Select the right comm. tools

Ambler, S. (2002). Agile modeling: effective practices for extreme programming and the unified process. John Wiley & Sons.



Establish communication patterns

• Asana, Trello, Microsoft Projects, …

• Github Wiki, Google Docs, Notion, …

• Github Issues, Jira, …

• Email, Slack, Facebook groups, …

• Zoom, Microsoft Teams, Skype, Phone call, …

• Face-to-face meetings



17-313 Communication channels

• Slack

• Regular meeting (Lectures, Recitations)

• Office Hours

• Canvas, Gradescope

• Webpage



Check out other projects



Communication expectation

• Quality of service guarantee
• How soon will you get back to your teammates?

• Weekend? Evening?

• Emergency
• Tag w/ 911

• Notify everyone with @channel 



Running a (good) meeting



How to run a meeting

• The Three Rules of Running a Meeting
• Set the Agenda

• Start on Time. End on Time.

• End with Action Items (and share them - Github Issues, Meeting 
Notes, …)

https://www.nytimes.com/guides/business/how-to-run-



How to run a meeting

• Set and document clear responsibilities and expectations

• Make everyone contribute
• Possible Roles: Coordinator, Scribe, Checker

• Manage Personalities

• Be Vulnerable



Random Advice

• Note takers have a lot of power to steer the meeting
• Collaborative notes are even better!

• Different meeting types have different best practices
• Decision-making meeting

• Brainstorming meeting

• One-on-one meeting

• Working sessions

• PLEASE RECORD ATTENDENCE



https://www.atlassian.com/blog/teamwork/how-to-run-effective-meetings



Async Communication via 
artifacts



Is this issue useful?

https://upthemes.com/blog/2014/02/writing-useful-github-issues/



Writing useful Github issues

https://upthemes.com/blog/2014/02/writing-useful-github-issues/



Writing useful Github issues

• Issue should include
• Context: explain the conditions which led you to write the issue

• Problem or idea: the context should lead to something

• Previous attempts to solve

• Solution or next step (if possible)

• Be specific!
• Include environment settings, versions, error messages, code 

examples when necessary

https://wiredcraft.com/blog/how-we-write-our-github-issues/

https://docs.github.com/en/issues/tracking-your-work-with-issues/about-issues



Writing useful Github issues

• Check out guidelines
• Google: https://developers.google.com/issue-

tracker/concepts/issues

• Rust: https://rustc-dev-guide.rust-lang.org/contributing.html#bug-
reports

• Don’t assume the solution

• One issue per issue

• Keep titles short and descriptive

• Format your messages

https://developers.google.com/issue-tracker/concepts/issues
https://developers.google.com/issue-tracker/concepts/issues
https://rustc-dev-guide.rust-lang.org/contributing.html
https://rustc-dev-guide.rust-lang.org/contributing.html


@Mention or assign appropriate people



Use labels

• Break the project down by areas of responsibility

• Mark non-triaged issues

• Isolate issues that await additional information from the 
reporter

• Example:
• Bug / Duplicate / Documentation / Help Wanted / Invalid / 

Enhancement

• status: wip, status: ready to implement, status: needs discussion

https://rewind.com/blog/best-practices-for-using-github-issues/

https://nira.com/common-github-issues/

Pytorch/pytorch Tensorflow/tensorflow Just-the-docs/just-the-docs



Don't forget to follow-up and close 
issues
• closes/resolves #issue_number

https://rewind.com/blog/best-practices-for-using-github-issues/



Pull requests

https://blog.carbonfive.com/why-write-good-pull-requests/



How to write good pull requests

https://www.pullrequest.com/blog/writing-a-great-pull-request-description/





How to write good pull requests

• Remember that anyone (in the company) could be reading 
your PR

• Be explicit about what/when feedback you want

• @mention individuals that you specifically want to involve in 
the discussion, and mention why. 
• “/cc @jesseplusplus for clarification on this logic”

https://github.blog/2015-01-21-how-to-write-the-perfect-pull-request/

https://betterprogramming.pub/how-to-make-a-perfect-pull-request-3578fb4c112



Keep your PRs small

https://twitter.com/iamdevloper/status/397664295875805184?s=20&t=EckdvW89m8RJgndHvWvV8Q



https://hugooodias.medium.com/the-anatomy-of-a-perfect-pull-request-567382bb6067

With this number in mind, a good pull request should not 
have more than 250 lines of code changed

https://smartbear.com/learn/code-review/best-practices-for-peer-code-review/



Offer useful feedback

• If you disagree strongly, consider giving it a few minutes 
before responding; think before you react.

• Ask, don’t tell. (“What do you think about trying…?” rather 
than “Don’t do…”)

• Explain your reasons why code should be changed. (Not in 
line with the style guide? A personal preference?)

• Be humble. (“I’m not sure, let’s try…”)

• Avoid hyperbole. (“NEVER do…”)

• Be aware of negative bias with online communication.

https://github.blog/2015-01-21-how-to-write-the-perfect-pull-request/



Avoid Duplicates

• “Duplicate of” issue/pull request number



Be a nice person



Knowledge Sharing



https://about.gitlab.com/topics/version-control/software-team-collaboration/

https://octoverse.github.com/creating



Maalej, W., & Robillard, M. P. (2013). Patterns of knowledge in API reference documentation. IEEE Transactions on Software Engineering, 39(9), 1264-1282.



Know your audience

• Internal document for your team (e.g., meeting note)

• Documentation for project contributors

• Documentation for non-developer collaborators (e.g., UX 
researchers)

• Documentation for developer users

• Documentation for clients with no software knowldge

• User manual for end users



https://victoria-soto.github.io/essays/SmartQuestions.html



https://stackoverflow.com/questions/31279359/new-to-coding-can-anyone-assist-me

https://www.memesmonkey.com/topic/help+me+help+you#&gid=1&pid=3

What is wrong with this question?



Make it easy for people to help you

• I am trying to ___, so that I can ___. 
I am running into ___. 
I have looked at ___ and tried ___.

• + I’m using this tech stack: ___.

• + I’m getting this error/result: ___.

• + I think the problem could be ___.

Https://techtonica.org/

http://kwugirl.blogspot.com/2014/04/how-to-be-better-junior-developer_25.html



Avoid Duplication

https://imgflip.com/i/2m81ep



Avoid Duplication - Slack

• Add quotation marks to search a specific phrase
• “Connection refused errors” will find results containing the entire 

phrase

• Add from: in front of a display name to search for 
information shared by someone specific
• HW1 from:@Michael Hilton

• Add is:thread to search within threads
• WSL is:thread

• Recap problem in caption to enable searching (if using 
screenshots)

https://slack.com/help/articles/202528808-Search-in-Slack#narrow-your-search-with-modifiers



Use threads

• Threads help us create 
organized discussions 
around specific messages, 
without adding clutter to a 
channel.

• You can manage thread 
notifications.

https://slack.com/help/articles/115000769927-Use-threads-to-organize-discussions-



Use channels properly

• : Class / homework 
announcements

• : Administrative / logistics 
questions

• : Anything! Useful links, 
memes, …

• : Technical issues (e.g., env 
setup, errors)



Archive and share the answers

• Avoid duplication!

• You’re probably not the only one who’s wondering.

• For 313, post your questions in public channels if possible.
• Feel free to answer too!

• For your team, create a team wiki (e.g., Github project wiki) 
or shared google document. 

• Please do not delete posts



Resolve Conflicts



Communication

Communication

Communication

Communication

Communication

You can’t solve any problem
without communication!



Conflict Resolution

• Your goal: Find a solution to the problem and move forward.
• As a smart person on ”Ted Lasso” once said, “Fight forward, not back.”

• Make sure that everybody works from the same set of facts.

• Establish ground rules for your team’s discussion. 
• Talk about how the situation made you feel. Never presume anything about anyone else.

• Remain calm and rational. If you feel triggered or threatened, extract yourself from 
the situation, wait an hour to chill out, and then try again.

• If you reach an impasse, talk to your team leader.

• If your team remains in conflict, escalate to your mentor TA.
• Your mentor TA will not solve your problem. They will help you to solve your own problems.



Team survey



Generally Due Mondays

• We will assign every week we are 
working in class (i.e., not spring 
break)

• Please be honest, we will monitor 
at first, so this should be early 
warning, not last resort

• We do not immediately change 
grades because of results, but may 
cause us to investigate.

• Please report bad team behavors 


	Slide 1: Software Teams and Communication
	Slide 2: Administrivia
	Slide 3: Happy Lunar New Year!
	Slide 4
	Slide 5: Learning Goals
	Slide 6
	Slide 7: We all work in a team
	Slide 8: We all work in a team
	Slide 9: We all work in a team
	Slide 10: Working solo vs. as a team
	Slide 11: Working as a team 
	Slide 13: Stages of Team Formation
	Slide 14: Norming
	Slide 15
	Slide 16
	Slide 17: Establish a collaboration process
	Slide 18
	Slide 19: Select the right comm. tools
	Slide 20: Establish communication patterns
	Slide 21: 17-313 Communication channels
	Slide 22: Check out other projects
	Slide 23: Communication expectation
	Slide 24: Running a (good) meeting
	Slide 25: How to run a meeting
	Slide 26: How to run a meeting
	Slide 27: Random Advice
	Slide 28
	Slide 29: Async Communication via artifacts
	Slide 30: Is this issue useful?
	Slide 31: Writing useful Github issues
	Slide 32: Writing useful Github issues
	Slide 33: Writing useful Github issues
	Slide 34: @Mention or assign appropriate people
	Slide 35: Use labels
	Slide 36: Don't forget to follow-up and close issues
	Slide 37: Pull requests
	Slide 38: How to write good pull requests
	Slide 39
	Slide 40: How to write good pull requests
	Slide 41: Keep your PRs small
	Slide 42
	Slide 43: Offer useful feedback
	Slide 44: Avoid Duplicates
	Slide 45: Be a nice person
	Slide 46: Knowledge Sharing
	Slide 47
	Slide 48
	Slide 49: Know your audience
	Slide 50
	Slide 51: What is wrong with this question?
	Slide 52: Make it easy for people to help you
	Slide 53: Avoid Duplication
	Slide 54: Avoid Duplication - Slack
	Slide 55: Use threads
	Slide 56: Use channels properly
	Slide 57: Archive and share the answers
	Slide 58: Resolve Conflicts
	Slide 59: Communication
	Slide 60: Conflict Resolution
	Slide 61: Team survey
	Slide 62: Generally Due Mondays

