
Introduction to 
Software Architecture

17-313 Spring 2024
Foundations of Software Engineering

https://cmu-313.github.io
Michael Hilton and Eduardo Feo Flushing

https://cmu-313.github.io/


• “Regrade requests can be submitted via Gradescope. The 
regrade period is open for one week after grades have 
been released for a particular assignment.”

Administrivia



Smoking Section

•Last two full rows

3



Learning Goals
● Understand the abstraction level of architectural reasoning
● Appreciate how software systems can be viewed at different 

abstraction levels
● Distinguish software architecture from (object-oriented) 

software design
● Explain the importance of architectural decisions
● Integrate architectural decisions into the software development 

process
● Document architectures clearly, without ambiguity

4



Outline

● Views and Abstraction
● Case Study: Autonomous Vehicles
● Software Architecture

• Definitions, Importance
• Software Design vs. Software Architecture

● Architecting software
• Integrating Architectural Decisions into the SW Development Process
• Common Software Architectures
• Documentation



Outline

● Views and Abstraction
● Case Study: Autonomous Vehicles
● Software Architecture

• Definitions, Importance
• Software Design vs. Software Architecture

● Architecting software
• Integrating Architectural Decisions into the SW Development Process
• Common Software Architectures
• Documentation



7



8



9





1
1

Source: Pittsburgh Zoning Map 
(https://gis.pittsburghpa.gov/pghzoning/) 



Abstracted views focus on conveying specific 
information
• They have a well-defined purpose
• Show only necessary information
• Abstract away unnecessary details
• Use legends/annotations to remove ambiguity
• Multiple views of the same object tell a larger story



Outline

● Views and Abstraction
● Case Study: Autonomous Vehicles
● Software Architecture

• Definitions, Importance
• Software Design vs. Software Architecture

● Architecting software
• Integrating Architectural Decisions into the SW Development Process
• Common Software Architectures
• Documentation



Case Study: Autonomous Vehicle Software

14



Case Study: Apollo
Check out the “side pass” feature from the video:
https://www.youtube.com/watch?v=BXNDUtNZdM4 

● Discuss in teams of 4 what parts are associated with the side pass feature

Source: https://github.com/ApolloAuto/apollo 

Doxygen: 
https://hidetoshi-furukawa.github.io/apollo-doxygen/index.html 

15

https://www.youtube.com/watch?v=BXNDUtNZdM4
https://github.com/ApolloAuto/apollo
https://hidetoshi-furukawa.github.io/apollo-doxygen/index.html


Apollo Software Architecture

16

Source: https://github.com/ApolloAuto/apollo/blob/v6.0.0/docs/specs/Apollo_5.5_Software_Architecture.md



Apollo Hardware Architecture

17

Source: https://github.com/ApolloAuto/apollo/blob/v6.0.0/README.md 



Apollo Hardware/Vehicle Overview

18

Source: https://github.com/ApolloAuto/apollo/blob/v6.0.0/README.md 



Apollo Perception Module

19



Apollo ML Models

20

Source: Zi Peng, Jinqiu Yang, Tse-Hsun (Peter) Chen, and Lei Ma. 2020. A First Look at the Integration of Machine Learning Models in Complex 
Autonomous Driving Systems: A Case Study on Apollo. In Proceedings of the 28th ACM Joint European Software Engineering Conference and 
Symposium on the Foundations of Software Engineering (ESEC/FSE ’20), https://doi.org/10.1145/ 3368089.3417063



Apollo Software Stack

2
1

Source: https://github.com/ApolloAuto/



Feature Evolution (Software Stack View)

22

Source: https://github.com/ApolloAuto/apollo



Outline

● Views and Abstraction
● Case Study: Autonomous Vehicles
● Software Architecture

• Definitions, Importance
• Software Design vs. Software Architecture

● Architecting software
• Integrating Architectural Decisions into the SW Development Process
• Common Software Architectures
• Documentation



Software Architecture

The software architecture of a program or computing system 
is the structure or structures of the system, which 
comprise software elements, the externally visible 
properties of those elements, and the relationships among 
them.

[Bass et al. 2003]

24

Note: this definition is ambivalent to 
whether the architecture is known or 

whether it’s any good!



Software Architecture

• Abstraction
• Elements: roles, responsibilities, behaviors, properties
• Relationships between elements
• Relationships to non-software elements

• Hardware, external systems
• Described from many different perspectives (views)



Software Architecture: Motivation

• Facilitates internal and external communication
• Describes design decisions and prescribes implementation 

constraints
• Relates to organizational structure
• Permits/precludes achieving non-functional requirements
• Control complexity
• Reason about and manage change
• Good basis for effort estimation
• …

Architecting Software the SEI Way - Software Architecture Fundamentals: Technical, Business, and Social Influences. Robert Wojcik. 2012



Software Architecture

“Architecture is about the important stuff. 
Whatever that is.”

Ralph Johnson



Software Design vs. 
Architecture



Levels of Abstraction

● Requirements
• high-level “what” needs to be done

● Architecture (High-level design)
• high-level “how”, mid-level “what”

● OO-Design (Low-level design, e.g. design patterns)
• mid-level “how”, low-level “what”

● Code
• low-level “how”



Design vs. Architecture
Design Questions
• How do I add a menu item in NodeBB?

• How can I make it easy to create posts in 
NodeBB?

• What lock protects this data?

• How does Google rank pages?

• What encoder should I use for secure 
communication?

• What is the interface between objects?

Architectural Questions
• How do I extend NodeBB with a plugin?

• What threads exist and how do they 
coordinate?

• How does Google scale to billions of hits 
per day?

• Where should I put my firewalls?

• What is the interface between 
subsystems?



Objects

31

Model



Design Patterns

32

Model
/ Subject

View

Controller

Factory

Observer

Command



Design Patterns

33



Design Patterns

34



Architecture

35



Architecture

36



Architecture

37



Outline

● Views and Abstraction
● Case Study: Autonomous Vehicles
● Software Architecture

• Definitions, Importance
• Software Design vs. Software Architecture

● Architecting software
• Integrating Architectural Decisions into the SW Development 

Process
• Common Software Architectures
• Documentation



https://www.instagram.com/architectanddesign

ht
tp

s:
//w

w
w

.a
rc

hd
ai

ly.
co

m
/

https://www.mykonosceramica.com/



w
w

w
.over-view

.com



• Whether you know it or not
• Whether you like it or not
• Whether it’s documented or not

If you don’t consciously elaborate the 
architecture, it will evolve by itself!

Every software system has an architecture

Architecting Software the SEI Way - Software Architecture Fundamentals: Technical, Business, and Social Influences. Robert Wojcik. 2012



Architectural
Decisions

Non-Functional
Requirements

Technical
Business

Social

Software
Architecture

influences

influences

Architecting Software the SEI Way - Software Architecture Fundamentals: Technical, Business, and Social Influences. Robert Wojcik. 2012





B. Nuseibeh, "Weaving together requirements and architectures". 2001 



“The best architectures, requirements, and designs emerge from self-organizing teams”

Agile and Architecture



The Zipper Model





Common Software Architectures



1. Pipes and Filters

© David Garlan and Mary Shaw, CMU/SEI-94-TR-021



Example:
Compilers



2. Object-Oriented Organization

© David Garlan and Mary Shaw, CMU/SEI-94-TR-021



3. Event-Driven Architecture



Example: Node.js



4. Blackboard Architecture

© David Garlan and Mary Shaw, CMU/SEI-94-TR-021



5. Layered Systems

© David Garlan and Mary Shaw, CMU/SEI-94-TR-021



Example: Internet Protocol Suite



Why Document Architecture?

● Blueprint for the system
• Artifact for early analysis
• Primary carrier of quality attributes
• Key to post-deployment maintenance and enhancement

● Documentation speaks for the architect, today and 20 
years from today

• As long as the system is built, maintained, and evolved 
according to its documented architecture

● Support traceability.



Views and Purposes

● Every view should align with a purpose
● Views should only represent information relevant to that purpose

• Abstract away other details
• Annotate view to guide understanding where needed

● Different views are suitable for different reasoning aspects (different 
quality goals), e.g.,

• Performance
• Extensibility
• Security
• Scalability
• …



The “4+1” view model

 Philippe Kruchten, Architectural Blueprints—The “4+1” View Model of Software Architecture[



Common Views in Documenting Software 
Architecture

• Logical View (End user)
• Functionality
• Subsystems, structures and their relations (dependencies, …)

• Process View (System Integration) 
• Non-functional aspects
• Components (processes, runnable entities) and connectors (messages, data flow, …)

• Development View (Developers)
• Software modularity / decomposition

• Physical View (System Engineer/DevOps)
• Hardware structures and their connections
• Deployment

• Scenarios (All)
• Outline tasks/use cases
• Sequences of interactions between objects and processes



Apollo Software Architecture

61

Source: https://github.com/ApolloAuto/apollo/blob/v6.0.0/docs/specs/Apollo_5.5_Software_Architecture.md



Apollo Hardware Architecture

62

Source: https://github.com/ApolloAuto/apollo/blob/v6.0.0/README.md 



Apollo Hardware/Vehicle Overview

63

Source: https://github.com/ApolloAuto/apollo/blob/v6.0.0/README.md 



Apollo Perception Module

64



Apollo ML Models

65

Source: Zi Peng, Jinqiu Yang, Tse-Hsun (Peter) Chen, and Lei Ma. 2020. A First Look at the Integration of Machine Learning Models in Complex 
Autonomous Driving Systems: A Case Study on Apollo. In Proceedings of the 28th ACM Joint European Software Engineering Conference and 
Symposium on the Foundations of Software Engineering (ESEC/FSE ’20), https://doi.org/10.1145/ 3368089.3417063



Apollo Software Stack

6
6

Source: https://github.com/ApolloAuto/





Guidelines for selecting a notation
● Suitable for purpose
● Often visual for compact representation
● Usually, boxes and arrows
● UML possible (semi-formal), but possibly constraining

• Note the different abstraction level – Subsystems or 
processes, not classes or objects

● Formal notations available
● Decompose diagrams hierarchically and in views
● Always include a legend
● Define precisely what the boxes mean
● Define precisely what the lines mean
● Do not try to do too much in one diagram

• Each view of architecture should fit on a page
• Use hierarchy



Learning Goals

● Understand the abstraction level of architectural 
reasoning

● Appreciate how software systems can be viewed at 
different abstraction levels

● Distinguish software architecture from (object-oriented) 
software design

● Explain the importance of architectural decisions
● Integrate architectural decisions into the software 

development process
● Document architectures clearly, without ambiguity


