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Learning Goals

● Understand the abstraction level of architectural reasoning
● Appreciate how software systems can be viewed at different 

abstraction levels
● Distinguish software architecture from (object-oriented) 

software design
● Explain the importance of architectural decisions
● Integrate architectural decisions into the software development 

process
● Document architectures clearly, without ambiguity
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● Views and Abstraction

● Case Study: Autonomous Vehicles

● Software Architecture
• Definitions, Importance

• Software Design vs. Software Architecture

● Architecting software
• Integrating Architectural Decisions into the SW Development Process

• Common Software Architectures

• Documentation
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Abstracted views focus on conveying specific 
information

• They have a well-defined purpose

• Show only necessary information

• Abstract away unnecessary details

• Use legends/annotations to remove ambiguity

• Multiple views of the same object tell a larger story
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Case Study: Autonomous Vehicle Software
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Case Study: Apollo

Check out the “side pass” feature from the video:
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Case Study: Apollo

Goal: Try to have a high-level understanding of how the side pass feature is 

built and integrated into the system.

Let’s explore the code and the documentation of apollo to find parts associated 

with the side pass feature:

Source: https://github.com/ApolloAuto/apollo

Doc: https://hidetoshi-furukawa.github.io/apollo-doxygen/index.html
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https://github.com/ApolloAuto/apollo
https://hidetoshi-furukawa.github.io/apollo-doxygen/index.html


Activity: Apollo 

Discuss in teams of 3 - 4 on what parts are associated with the side 

pass feature based on the 6 diagrams in the handout:

● Circle components that you think implement this feature. 



Apollo Software Architecture
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Source: https://github.com/ApolloAuto/apollo/blob/v6.0.0/docs/specs/Apollo_5.5_Software_Architecture.md



Apollo Hardware Architecture
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Source: https://github.com/ApolloAuto/apollo/blob/v6.0.0/README.md



Apollo Hardware/Vehicle Overview
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Source: https://github.com/ApolloAuto/apollo/blob/v6.0.0/README.md



Apollo Perception Module
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Apollo Machine Learning (ML) Models
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Source: Zi Peng, Jinqiu Yang, Tse-Hsun (Peter) Chen, and Lei Ma. 2020. A First Look at the Integration of Machine Learning Models in Complex 

Autonomous Driving Systems: A Case Study on Apollo. In Proceedings of the 28th ACM Joint European Software Engineering Confer ence and 

Symposium on the Foundations of Software Engineering (ESEC/FSE ’20), https://doi.org/10.1145/ 3368089.3417063



Apollo Software Stack
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Source: https://github.com/ApolloAuto/
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Software Architecture

The software architecture of a program or computing system 

is the structure or structures of the system, which comprise

software elements, the externally visible properties of those

elements, and the relationships among them.

[Bass et al. 2003]
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Note: this definition is ambivalent to 

whether the architecture is known or 

whether it’s any good!



Software Architecture

Abstraction

Elements: roles, responsibilities, behaviors, properties

Relationships between elements

Relationships to non-software elements
Hardware, external systems

Described from many different perspectives (views)



Apollo Software Architecture
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Source: https://github.com/ApolloAuto/apollo/blob/v6.0.0/docs/specs/Apollo_5.5_Software_Architecture.md



Apollo Machine Learning (ML) Models
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Source: Zi Peng, Jinqiu Yang, Tse-Hsun (Peter) Chen, and Lei Ma. 2020. A First Look at the Integration of Machine Learning Models in Complex 

Autonomous Driving Systems: A Case Study on Apollo. In Proceedings of the 28th ACM Joint European Software Engineering Confer ence and 

Symposium on the Foundations of Software Engineering (ESEC/FSE ’20), https://doi.org/10.1145/ 3368089.3417063



Software Architecture: Motivation

• Facilitates internal and external communication
• Describes design decisions and prescribes implementation 

constraints

Architecting Software the SEI Way - Software Architecture Fundamentals: Technical, Business, and Social Influences. Robert Wojcik. 2012



Apollo Software Stack

3
0

Source: https://github.com/ApolloAuto/



Software Architecture: Motivation

• Facilitates internal and external communication
• Describes design decisions and prescribes implementation 

constraints
• Relates to organizational structure

Architecting Software the SEI Way - Software Architecture Fundamentals: Technical, Business, and Social Influences. Robert Wojcik. 2012



Conway’s Law

Company Structure Software Architecture



Software Architecture: Motivation

• Facilitates internal and external communication
• Describes design decisions and prescribes implementation 

constraints
• Relates to organizational structure
• Permits/precludes achieving non-functional requirements
• Control complexity
• Reason about and manage change
• Good basis for effort estimation
• …

Architecting Software the SEI Way - Software Architecture Fundamentals: Technical, Business, and Social Influences. Robert Wojcik. 2012



Software Design vs. 
Architecture



Levels of Abstraction

● Requirements
• high-level “what” needs to be done

● Architecture (High-level design)
• high-level “how”, mid-level “what”

● OO-Design (Low-level design, e.g. design patterns)
• mid-level “how”, low-level “what”

● Code
• low-level “how”



Design vs. Architecture

Design Questions

• How do I add a menu item in NodeBB?

• How can I make it easy to create posts in 
NodeBB?

• What lock protects this data?

• How does Google rank pages?

• What encoder should I use for secure 
communication?

• What is the interface between objects?

Architectural Questions

• How do I extend NodeBB with a plugin?

• What threads exist and how do they 
coordinate?

• How does Google scale to billions of hits 
per day?

• Where should I put my firewalls?

• What is the interface between 
subsystems?



Objects
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Model



Design Patterns
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Model
/ Subject

View

Controller

Factory

Observer

Command



Design Patterns
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Design Patterns
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Architecture
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Architecture
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Architecture

43



Outline
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• Definitions, Importance
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• Whether you know it or not
• Whether you like it or not
• Whether it’s documented or not

If you don’t consciously elaborate the 
architecture, it will evolve by itself!

Every software system has an architecture

Architecting Software the SEI Way - Software Architecture Fundamentals: Technical, Business, and Social Influences. Robert Wojcik. 2012



Architectural
Decisions

Non-Functional
Requirements

Technical
Business

Social

Software
Architecture

Architecting Software the SEI Way - Software Architecture Fundamentals: Technical, Business, and Social Influences. Robert Wojcik. 2012





Agile and Architecture



The Zipper Model



Common Software Architectures



1. Pipes and Filters

© David Garlan and Mary Shaw, CMU/SEI-94-TR-021



Example:
Compilers



2. Object-Oriented Organization

© David Garlan and Mary Shaw, CMU/SEI-94-TR-021



Example: Adobe Photoshop



3. Event-Driven Architecture



Example: Node.js



4. Blackboard Architecture

© David Garlan and Mary Shaw, CMU/SEI-94-TR-021



Example: Stock exchange



5. Layered Systems

© David Garlan and Mary Shaw, CMU/SEI-94-TR-021



Example: Internet Protocol Suite



Why Document Architecture?

● Blueprint for the system
• Artifact for early analysis

• Primary carrier of quality attributes

• Key to post-deployment maintenance and enhancement

● Documentation speaks for the architect, today and 20 

years from today
• As long as the system is built, maintained, and evolved 

according to its documented architecture

● Support traceability.







● Suitable for purpose
● Often visual for compact representation
● Usually, boxes and arrows
● UML possible (semi-formal), but possibly constraining

• Note the different abstraction level – Subsystems or 
processes, not classes or objects

● Formal notations available
● Decompose diagrams hierarchically and in views
● Always include a legend
● Define precisely what the boxes mean
● Define precisely what the lines mean
● Do not try to do too much in one diagram

• Each view of architecture should fit on a page
• Use hierarchy

Guidelines for selecting a notation
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