
Introduction to
Software Architecture

17-313 Spring 2025

Foundations of Software Engineering

https://cmu-313.github.io

Michael Hilton, Austin Henley, and Nadia Nahar

https://cmu-313.github.io/

• “Regrade requests can be submitted via Gradescope. The

regrade period is open for one week after grades have

been released for a particular assignment.”

Administrivia

Smoking Section

• Last full row

3

Learning Goals

● Understand the abstraction level of architectural reasoning
● Appreciate how software systems can be viewed at different

abstraction levels
● Distinguish software architecture from (object-oriented)

software design
● Explain the importance of architectural decisions
● Integrate architectural decisions into the software development

process
● Document architectures clearly, without ambiguity

4

Outline

● Views and Abstraction

● Case Study: Autonomous Vehicles

● Software Architecture
• Definitions, Importance

• Software Design vs. Software Architecture

● Architecting software
• Integrating Architectural Decisions into the SW Development Process

• Common Software Architectures

• Documentation

Outline

● Views and Abstraction

● Case Study: Autonomous Vehicles

● Software Architecture
• Definitions, Importance

• Software Design vs. Software Architecture

● Architecting software
• Integrating Architectural Decisions into the SW Development Process

• Common Software Architectures

• Documentation

7 7

8 8

9 9

10

1
1

Abstracted views focus on conveying specific
information

• They have a well-defined purpose

• Show only necessary information

• Abstract away unnecessary details

• Use legends/annotations to remove ambiguity

• Multiple views of the same object tell a larger story

Outline

● Views and Abstraction

● Case Study: Autonomous Vehicles

● Software Architecture
• Definitions, Importance

• Software Design vs. Software Architecture

● Architecting software
• Integrating Architectural Decisions into the SW Development Process

• Common Software Architectures

• Documentation

Case Study: Autonomous Vehicle Software

14

Case Study: Apollo

Check out the “side pass” feature from the video:

15

Case Study: Apollo

Goal: Try to have a high-level understanding of how the side pass feature is

built and integrated into the system.

Let’s explore the code and the documentation of apollo to find parts associated

with the side pass feature:

Source: https://github.com/ApolloAuto/apollo

Doc: https://hidetoshi-furukawa.github.io/apollo-doxygen/index.html

16

https://github.com/ApolloAuto/apollo
https://hidetoshi-furukawa.github.io/apollo-doxygen/index.html

Activity: Apollo

Discuss in teams of 3 - 4 on what parts are associated with the side

pass feature based on the 6 diagrams in the handout:

● Circle components that you think implement this feature.

Apollo Software Architecture

18

Source: https://github.com/ApolloAuto/apollo/blob/v6.0.0/docs/specs/Apollo_5.5_Software_Architecture.md

Apollo Hardware Architecture

19

Source: https://github.com/ApolloAuto/apollo/blob/v6.0.0/README.md

Apollo Hardware/Vehicle Overview

20

Source: https://github.com/ApolloAuto/apollo/blob/v6.0.0/README.md

Apollo Perception Module

21

Apollo Machine Learning (ML) Models

22

Source: Zi Peng, Jinqiu Yang, Tse-Hsun (Peter) Chen, and Lei Ma. 2020. A First Look at the Integration of Machine Learning Models in Complex

Autonomous Driving Systems: A Case Study on Apollo. In Proceedings of the 28th ACM Joint European Software Engineering Confer ence and

Symposium on the Foundations of Software Engineering (ESEC/FSE ’20), https://doi.org/10.1145/ 3368089.3417063

Apollo Software Stack

2
3

Source: https://github.com/ApolloAuto/

Outline

● Views and Abstraction

● Case Study: Autonomous Vehicles

● Software Architecture
• Definitions, Importance

• Software Design vs. Software Architecture

● Architecting software
• Integrating Architectural Decisions into the SW Development Process

• Common Software Architectures

• Documentation

Software Architecture

The software architecture of a program or computing system

is the structure or structures of the system, which comprise

software elements, the externally visible properties of those

elements, and the relationships among them.

[Bass et al. 2003]

25

Note: this definition is ambivalent to

whether the architecture is known or

whether it’s any good!

Software Architecture

Abstraction

Elements: roles, responsibilities, behaviors, properties

Relationships between elements

Relationships to non-software elements
Hardware, external systems

Described from many different perspectives (views)

Apollo Software Architecture

27

Source: https://github.com/ApolloAuto/apollo/blob/v6.0.0/docs/specs/Apollo_5.5_Software_Architecture.md

Apollo Machine Learning (ML) Models

28

Source: Zi Peng, Jinqiu Yang, Tse-Hsun (Peter) Chen, and Lei Ma. 2020. A First Look at the Integration of Machine Learning Models in Complex

Autonomous Driving Systems: A Case Study on Apollo. In Proceedings of the 28th ACM Joint European Software Engineering Confer ence and

Symposium on the Foundations of Software Engineering (ESEC/FSE ’20), https://doi.org/10.1145/ 3368089.3417063

Software Architecture: Motivation

• Facilitates internal and external communication
• Describes design decisions and prescribes implementation

constraints

Architecting Software the SEI Way - Software Architecture Fundamentals: Technical, Business, and Social Influences. Robert Wojcik. 2012

Apollo Software Stack

3
0

Source: https://github.com/ApolloAuto/

Software Architecture: Motivation

• Facilitates internal and external communication
• Describes design decisions and prescribes implementation

constraints
• Relates to organizational structure

Architecting Software the SEI Way - Software Architecture Fundamentals: Technical, Business, and Social Influences. Robert Wojcik. 2012

Conway’s Law

Company Structure Software Architecture

Software Architecture: Motivation

• Facilitates internal and external communication
• Describes design decisions and prescribes implementation

constraints
• Relates to organizational structure
• Permits/precludes achieving non-functional requirements
• Control complexity
• Reason about and manage change
• Good basis for effort estimation
• …

Architecting Software the SEI Way - Software Architecture Fundamentals: Technical, Business, and Social Influences. Robert Wojcik. 2012

Software Design vs.
Architecture

Levels of Abstraction

● Requirements
• high-level “what” needs to be done

● Architecture (High-level design)
• high-level “how”, mid-level “what”

● OO-Design (Low-level design, e.g. design patterns)
• mid-level “how”, low-level “what”

● Code
• low-level “how”

Design vs. Architecture

Design Questions

• How do I add a menu item in NodeBB?

• How can I make it easy to create posts in
NodeBB?

• What lock protects this data?

• How does Google rank pages?

• What encoder should I use for secure
communication?

• What is the interface between objects?

Architectural Questions

• How do I extend NodeBB with a plugin?

• What threads exist and how do they
coordinate?

• How does Google scale to billions of hits
per day?

• Where should I put my firewalls?

• What is the interface between
subsystems?

Objects

37

Model

Design Patterns

38

Model
/ Subject

View

Controller

Factory

Observer

Command

Design Patterns

39

Design Patterns

40

Architecture

41

Architecture

42

Architecture

43

Outline

● Views and Abstraction

● Case Study: Autonomous Vehicles
● Software Architecture

• Definitions, Importance
• Software Design vs. Software Architecture

● Architecting software
• Integrating Architectural Decisions into the SW Development

Process
• Common Software Architectures
• Documentation

https://www.instagram.com/architectanddesign

h
tt
p
s
:/

/w
w

w
.a

rc
h
d

a
il
y
.c

o
m

/

https://www.mykonosceramica.com/

w
w

w
.o

ve
r-vie

w
.c

om

• Whether you know it or not
• Whether you like it or not
• Whether it’s documented or not

If you don’t consciously elaborate the
architecture, it will evolve by itself!

Every software system has an architecture

Architecting Software the SEI Way - Software Architecture Fundamentals: Technical, Business, and Social Influences. Robert Wojcik. 2012

Architectural
Decisions

Non-Functional
Requirements

Technical
Business

Social

Software
Architecture

Architecting Software the SEI Way - Software Architecture Fundamentals: Technical, Business, and Social Influences. Robert Wojcik. 2012

Agile and Architecture

The Zipper Model

Common Software Architectures

1. Pipes and Filters

© David Garlan and Mary Shaw, CMU/SEI-94-TR-021

Example:
Compilers

2. Object-Oriented Organization

© David Garlan and Mary Shaw, CMU/SEI-94-TR-021

Example: Adobe Photoshop

3. Event-Driven Architecture

Example: Node.js

4. Blackboard Architecture

© David Garlan and Mary Shaw, CMU/SEI-94-TR-021

Example: Stock exchange

5. Layered Systems

© David Garlan and Mary Shaw, CMU/SEI-94-TR-021

Example: Internet Protocol Suite

Why Document Architecture?

● Blueprint for the system
• Artifact for early analysis

• Primary carrier of quality attributes

• Key to post-deployment maintenance and enhancement

● Documentation speaks for the architect, today and 20

years from today
• As long as the system is built, maintained, and evolved

according to its documented architecture

● Support traceability.

● Suitable for purpose
● Often visual for compact representation
● Usually, boxes and arrows
● UML possible (semi-formal), but possibly constraining

• Note the different abstraction level – Subsystems or
processes, not classes or objects

● Formal notations available
● Decompose diagrams hierarchically and in views
● Always include a legend
● Define precisely what the boxes mean
● Define precisely what the lines mean
● Do not try to do too much in one diagram

• Each view of architecture should fit on a page
• Use hierarchy

Guidelines for selecting a notation

	Slide 1: Introduction to Software Architecture
	Slide 2: Administrivia
	Slide 3: Smoking Section
	Slide 4: Learning Goals
	Slide 5: Outline
	Slide 6: Outline
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12: Abstracted views focus on conveying specific information
	Slide 13: Outline
	Slide 14: Case Study: Autonomous Vehicle Software
	Slide 15: Case Study: Apollo
	Slide 16: Case Study: Apollo
	Slide 17: Activity: Apollo
	Slide 18: Apollo Software Architecture
	Slide 19: Apollo Hardware Architecture
	Slide 20: Apollo Hardware/Vehicle Overview
	Slide 21: Apollo Perception Module
	Slide 22: Apollo Machine Learning (ML) Models
	Slide 23: Apollo Software Stack
	Slide 24: Outline
	Slide 25: Software Architecture
	Slide 26: Software Architecture
	Slide 27: Apollo Software Architecture
	Slide 28: Apollo Machine Learning (ML) Models
	Slide 29: Software Architecture: Motivation
	Slide 30: Apollo Software Stack
	Slide 31: Software Architecture: Motivation
	Slide 32: Conway’s Law
	Slide 33: Software Architecture: Motivation
	Slide 34: Software Design vs. Architecture
	Slide 35: Levels of Abstraction
	Slide 36: Design vs. Architecture
	Slide 37: Objects
	Slide 38: Design Patterns
	Slide 39: Design Patterns
	Slide 40: Design Patterns
	Slide 41: Architecture
	Slide 42: Architecture
	Slide 43: Architecture
	Slide 44: Outline
	Slide 45
	Slide 46
	Slide 47: Every software system has an architecture
	Slide 48
	Slide 49
	Slide 50: Agile and Architecture
	Slide 51: The Zipper Model
	Slide 52: Common Software Architectures
	Slide 53: 1. Pipes and Filters
	Slide 54: Example: Compilers
	Slide 55: 2. Object-Oriented Organization
	Slide 56: Example: Adobe Photoshop
	Slide 57: 3. Event-Driven Architecture
	Slide 58: Example: Node.js
	Slide 59: 4. Blackboard Architecture
	Slide 60: Example: Stock exchange
	Slide 61: 5. Layered Systems
	Slide 62: Example: Internet Protocol Suite
	Slide 63: Why Document Architecture?
	Slide 64
	Slide 65
	Slide 66: Guidelines for selecting a notation

