
Design Docs
17-313 Spring 2024

Foundations of Software Engineering

https://cmu-313.github.io

Michael Hilton and Rohan Padhye

https://cmu-313.github.io/


Administrivia

• P2B due Tue, Sep 24th, 11:59pm

• Reminder: Please do not submit participation exercises for 
people who are not participating. 

• Guest Lecture Thursday- Austin Henley, until recently at 
MSFT
• “Headaches of shipping AI in products”



Team survey



Team survey

• Please fill out by tonight (11:59pm)

• We will have one a week

• We look at them and use them to diagnose team problems

• They will be one participation point each

• Posted to slack and canvas too



Smoking Section

• Last full row

5



Types of documentation

• Reference documentation (incl. code comments)

• Design documents

• Tutorials

• Conceptual documentation

• Landing pages



Design documents

• Code review before there is code!

• Collaborative (Google Docs)

• Ensure various concerns are covered, such 
as: security implications, internationalization, 
storage requirements, and privacy concerns.

• A good design doc should cover
● Goals and use cases for the design

● Implementation ideas (not too specific!)

● Propose key design decisions with an emphasis 
on their individual tradeoffs



Design Documents

• The best design docs suggest design 
goals, and cover alternative designs, 
documenting the strengths and 
weaknesses of each.

• The worst design docs accidentally 
embed ambiguities, which cause 
implementors to develop 
contradictory solutions that the 
customer doesn’t want. 





Why is this important?



Common parts/templates

1. Metadata: version, date, 
authors

2. Executive Summary: 
problem being solved, 
project mission

3. Stakeholders 
(and non-stakeholders)

4. Scenarios / User Stories

5. User Experience

1. High-level Requirements: 
Functional
• Global Requirements: Quality, 

Security, Privacy, Ethics

2. Features and Operations

3. Design Considerations and 
Tradeoffs

4. Non-Goals

5. Roadmap / Timeline

6. Open Issues



Examples: SourceGraph 
RFCs
Requests for Comment

https://about.sourcegraph.com/handbook/communication/rfcs





When to use an RFC: 

• You want to frame a problem and propose a solution.

• You want thoughtful feedback from team members on our 
globally-distributed remote team.

• You want to surface an idea, tension, or feedback.

• You want to define a project or design brief to drive project 
collaboration.

• You need to surface and communicate around a highly cross-
functional decision with our formal decision-making process.

https://handbook.sourcegraph.com/company-info-and-process/communication/rfcs/


Don’t use an RFC when

• You want to discuss personal or sensitive topics one-on-one 
with another team member.

• You want to make a decision to change something where 
you are the decider. In the vast majority of cases, creating an 
RFC to explain yourself will be overkill. RFCs should only be 
used if a decision explicitly requires one of the bullets in the 
previous page.



RFC Labels

• WIP: The author is still drafting the RFC and it’s not ready for review.

• Review: The Review label is used when the RFC is ready for comments and feedback.

• Approved: When the RFC is for the purpose of making a decision, the Approved label indicates 
that the decision has been made.

• Implemented: When the RFC is for the purpose of making a decision, the Implemented label 
indicates that the RFC’s proposal has been implemented.

• Closed: When the RFC is for the purpose of collaboration or discussion but not necessarily to 
make a decision or propose a specific outcome that will eventually become Implemented, the 
Closed label indicates that the RFC is no longer an active collaborative artifact.

• Abandoned: When the RFC is for the purpose of making a decision, and there are no plans to 
move forward with the RFC’s proposal, the Abandoned label indicates that the RFC has been 
purposefully set aside.



Observe Sourcegraph Design Docs

• Docs are publicly available
https://drive.google.com/drive/folders/1zP3FxdDlcSQGC1qvM9lHZRa
HH4I9Jwwa

• Let’s take a look at one!

https://drive.google.com/drive/folders/1zP3FxdDlcSQGC1qvM9lHZRaHH4I9Jwwa
https://drive.google.com/drive/folders/1zP3FxdDlcSQGC1qvM9lHZRaHH4I9Jwwa


Exercise

• 4 Proposed Features:
• Add Payment Method

• More Secure Authentication

• Add Android Support

• Internationalization (i18n)



Time to write our own design docs!

• Divide up into 4 sections –NOTE: you should be signed in w/Andrew to google

• Your mission:
• Brainstorm a feature to add to a scooter app and write a design 

spec, together, in real time!

• Review the design doc, collaborate around text 

• Review another team's design doc, ask questions/leave comments



Time to write our own design docs!

• Divide up into 4 sections –NOTE: you should be signed in w/Andrew to google

• Your mission:

• Brainstorm a feature to add to a scooter app and write a design spec, together, in real time!

• Review the design doc, collaborate around text 

• Review another team's design doc, ask questions/leave comments


	Slide 1: Design Docs
	Slide 2: Administrivia
	Slide 3: Team survey
	Slide 4: Team survey
	Slide 5: Smoking Section
	Slide 6: Types of documentation
	Slide 7: Design documents
	Slide 8: Design Documents
	Slide 9
	Slide 10: Why is this important?
	Slide 11: Common parts/templates
	Slide 12: Examples: SourceGraph RFCs
	Slide 13
	Slide 14: When to use an RFC: 
	Slide 15: Don’t use an RFC when
	Slide 16: RFC Labels
	Slide 17: Observe Sourcegraph Design Docs
	Slide 18: Exercise
	Slide 19: Time to write our own design docs!
	Slide 20: Time to write our own design docs!

