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Administrivia

« Teamwork assessments due every Monday

« Midterm 1 on February 27 in class

« We will release sample / practice exams for
recitation next week
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Learning Goals

« Contrast monolithic vs. modular software architectures.
« Enumerate various types of modularity including plug-in

architectures, service-oriented architectures, and microservices.

« Reason about tradeoffs of microservices architectures.
- Principles of microservices: how to benefit and avoid their
pitfalls
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Outline

Monoliths vs. Modular Architecture

Service-based Architecture
« (Case Study: Chrome Web Browser
Microservices

Principles of Microservices
Advantages and Challenges of Microservices
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Monolithic vs. Modular architecture
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Monolithic Architecture

User
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Monolithic styles

L]
Ll
Frontend E Backend
| = | = -
— —
L™ A
Chignt I-I'\ll-rll‘..i'l'.'l'l Application Serer Datakuse Jm Alp.p“:aﬁnn -

E
' Database

Source: https://www.seobility.net (CC BY-SA 4.0)
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Monolithic Architecture
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Modularity comes in many ways

- Plug-in architectures
« Distinct code repositories, linked-in to a monolithic run-time

« Examples:

* Linux kernel modules

* Themes in NodeBB, WordPress

* Language packs for Visual Studio, IntelliJ, Sublime Text
« Separates development, but runs as “one”.

Core System
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Modularity comes in many ways

- Plug-in architectures
« Distinct code repositories, linked-in to a monolithic run-time

« Examples:
* Linux kernel modules
* Themes in NodeBB, WordPress
* Language packs for Visual Studio, IntelliJ, Sublime Text

« Separates development, but runs as “one”.

- Service-oriented architectures
« Distinct processes communicating via messages (e.g., Web browsers)
« Separates run-time resource management and failure / security issues.

- Distributed micro-services
« Independent, autonomous services communicating via web APIs
« Separates almost all concerns
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SERVICE-BASED ARCHITECTURE




Case Study: Web Browsers

Source: https://developers.google.com b/upd browser-pa (CCBY 4.0)
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https://developers.google.com/web/updates/2018/09/inside-browser-part1

Multi-threaded browser in single process
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https://developers.google.com/web/updates/2018/09/inside-browser-part1

Multi-process browser with IPC

browser-part1 (CC BY 4.0)
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Service-based browser architecture
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Service-based browser architecture
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Service-based browser architecture
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https://developers.google.com/web/updates/2018/09/inside-browser-part1

Navigating to a web site uses service requests
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https://developers.google.com/web/updates/2018/09/inside-browser-part1

Navigating to a web site uses service requests
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https://developers.google.com/web/updates/2018/09/inside-browser-part1

Navigating to a web site uses service requests
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https://developers.google.com/web/updates/2018/09/inside-browser-part1

Navigating to a web site uses service requests
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https://developers.google.com/web/updates/2018/09/inside-browser-part1

Navigating to a web site uses service requests
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https://developers.google.com/web/updates/2018/09/inside-browser-part1
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Multi-Process Model Benefits

Reliability Benefit
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Multi-Process Costs and Trade-offs

- Memory Overhead
- spinning up new processes requires additional memory allocation

- Process Creation Overhead

- more expensive to create a new process rather than simply a new
thread in an existing process

- |IPC Overhead

- communicating across processes is slower than keeping
communication completely localized within a single process
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Pros and Cons of Service-based architecture

Pros

« Ability to change components independently
« Independent processes (Isolation, Security)

« Focusing on doing one thing well

Cons

« Increased complexity

« Increased cost and overheads

« Difficult to ensure data consistency across different services
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MICROSERVICES
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£ Microservices
QN4 /
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Microsgrvii;es Everywhere
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“Small autonomous services that work well together”

Sam Newman
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Monolithic vs. Service-based vs. Microservice
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Microservices
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Netflix Microservices

« Mylist Browse by Languages
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Why Can't Netflix Use a Monolithic
Architecture?

S3D
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Require architecture that can handle various computational
demands

Need scalability: must support millions of users worldwide
Need fault tolerance to maintain a seamless user experience
New features and improvements need to be rolled out rapidly
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Netflix Microservices

« User subscriptions
- Banner Ad
« Popular Shows

the : .
MENU « Trending Now
— e - Continue Watching
« My List (saved shows)
* Notifications
* User management

[
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https://www.youtube.com/watch?v=V_oxbj-alwQ
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. Product
‘ + Bucket testing
» Subscriber
' »  Recommendations

~ Platform
* Routing
A « Configuration
= . Crypto

. Persistence
‘¥ + Cache
« Database
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Online Boutigue: Guess some microservices

ONLINESOUTIU: suo - R ONLINESOUTI0UE s uso - | H

N\

Hot Products Cart (1) (Cempry con Shipping Address

Continue Shepping

E-mail Address

someone@example.com

Sunglasses
o SKU #OLICESPCTZ
Straat Addross
1600 Amphitheatre Parkway
Quantity: 1 $19.99
2ip Code
94043
Shipping $8.99
Gity
Mountain View
Sunglasses Tank Top Watch Total $2898
$19.99 $18.99 $109.99
State Country

CA United States

Payment Method

Credit Card Number

4432801561520454

https://cymbal-shops.retail.cymbal.dev/
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Online Boutigque: Microservice Architecture
R

User loadgenerator
HTTP HTTP
frontend checkout
ad recommendation payment email
productcatalog ‘ shipping currency
cart

ﬁ https://cymbal-shops.retail.cymbal.dev/
Redis cache
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Service Language Description

Exposes an HTTP server to serve the website. Does not require signup/login
and generates session IDs for all users automatically.

cartservice C# Stores the items in the user's shopping cart in Redis and retrieves it.

Provides the list of products from a JSON file and ability to search products and
get individual products.

Converts one money amount to another currency. Uses real values fetched

frontend Go

productcatalogservice Go

CUTTENCYSEICe Node.js from European Central Bank. It's the highest QPS service.
: . Charges the given credit card info (mock) with the given amount and returns a
paymentservice Node.js :
transaction ID.
shippingservice Go Gives shipping cost estimates based on the shopping cart. Ships items to the

given address (mock)
emailservice Python Sends users an order confirmation email (mock).
Retrieves user cart, prepares order and orchestrates the payment, shipping and

checkoutservice Go the email notification.

recommendationservice Python Recommends other products based on what's given in the cart.
adservice Java Provides text ads based on given context words.

loadgenerator Python/Locust ]E?c())rrlltttlannlfjously sends requests imitating realistic user shopping flows to the
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https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/frontend
https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/cartservice
https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/productcatalogservice
https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/currencyservice
https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/paymentservice
https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/shippingservice
https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/emailservice
https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/checkoutservice
https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/recommendationservice
https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/adservice
https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/loadgenerator

Scalability

A monolithic application puts all its
functionality into a single process...

v
We

... and scales by replicating the
monolith on multiple servers

9
w'e [
oV @
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A microservices architecture puts 9

each element of functionality into a

separate service...

... and scales by distributing these services
across servers, replicating as needed.
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Types of Scaling: Vertical vs. Horizontal

Vertical Scaling

Increase or decrease the capacity
of existing services/instances.

Software and Societa

Systems Department

Horizontal Scaling

Add more resources like virtual
machines to your system to spread
out the workload across them.

M
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Data Management and Consistency
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Deployment and Evolution




Conway’s Law

ul
specialists

“Any organization that designs a system (defined
broadly) will produce a design whose structure is a
copy of the organization's communication structure

n
.

middleware
specialists

Ev)gv15x] IU

—— e e e e o o Em E —w

. 888
AR

Crodd-functional ieams.., - OFgARILR around capabilitied
Bacause Conway's Law

Siloed functional teams... ... lead to silod application architectures.
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YOU BUILD IT

YOU RUN
PANEN | T

“The traditional model is that you take your software to the wall that
separates development and operations, and throw it over and then
forget about it. Not at Amazon. You build it, you run it. This brings
developers into contact with the day-to-day operation of their
software. It also brings them into day-to-day contact with the
customer. This customer feedback loop is essential for improving the
quality of the service!

-- Werner Vogels in ‘A conversation with Werner Vogels” in ACM Queue, May 2006
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MICROSERVICES: PRINCIPLES




Building
Microservices

Sam Newman's Principles of Microservices




Domain-driven modeling

Model services around business capabilities

DISHAGA

Koty s Compiats U S
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Domain-driven modeling

Scope of change
3 ]
Web UI Web Ul : I
i *d—-—
Frontend team <<Presentation>> e 3 Show genre Ul control
Frontend team I I
1
Backend | :
2n Backend s ; E
: _ : [ | __Expose current genre, change
Backend team <<Business logic>> Backend team <<Business logic>» : I genre API
1
1 : :
1
Eftaba:f mﬁf | «+———1Store genre choice
DBAs Dala DBAs ! )

Software and Societa %‘ﬂﬁ“‘g 1€
Systems Department MElon

Uni ity



Domain-driven modeling

Scope of change

!
|
Frontend 4’- — Show genre Ul control
|
|
|

--------------------- B o

|
|
' Remember Conway’s Law?
' ock Purchase | Profile 21 Expose current genre, change
logic functionality functionality : functionality genre API
!
|

i H : ' :
----- ¥} @
‘ r\ lI 1 I\ lI
. : 4 ! A
Data : 4'-—-S!ore genre choice f kg ' f hd
' ' R ] : i AT f 5
e 1 ki ' ; b y 4 ;
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Building
Microservices

Sam Newman's Principles of Microservices




Culture of Automation

API-Driven Machine Provisioning
Continuous Delivery
Automated Testing
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Continuous Delivery

Team A e -
\ Team A —— = Release ——» Production
Team B Team B %n— Release %» Production
%‘b Release Production _—
_’_’_,-4" candidate ) :
Team C \/ Team C = Release ——» Production
AN ——
T > / Team D = Release & Production
eam . /
Monolith Microservices

Image Source: https://learn.microsoft.com/en-us/azure/architecture/microservices/ci-cd
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Building
Microservices

Sam Newman's Principles of Microservices




Deploy Independently

One Service Per OS
Consumer-Driven Contracts
Multiple coexisting versions
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One Service Per OS

One Service Per 0OS Mutiple Services Per OS
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Consumer-Driven Contracts

REAL REQUEST

EXPECTED REQUEST
S -

EXPECTED RESPONSE

REAL RESPONSE

SR =

s ES
L
L

S

2

AN 4




Multiple coexisting versions




Building
Microservices

Sam Newman's Principles of Microservices




ide implementation details

- Design your APIs carefully
- It's easier to expose some details later than hide them
- Do not share your database!
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ide implementation details

Recall: Encapsulation in OOP

MyClass
ap.vdute.- youl €—
private vos2
v
Mad:‘i'mli) f-....____/ REST of
pekVan 1() v ook
_(sdtm& & gelfecs)

s 3 Software and Societa !\ii rﬁ:;;f =
¥le
University

Systems Department



Sharing database: Anti-pattern

Service A Service B




Building
Microservices

Sam Newman's Principles of Microservices




Decentralized Governance

Mind Conway's Law

You Build It, You Run It
Embrace team autonomy
Internal Open Source Model
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Mind Conway’s Law

u
specialists
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YOU BUILD IT

YOU RUN
PANEN | T

“The traditional model is that you take your software to the wall that
separates development and operations, and throw it over and then
forget about it. Not at Amazon. You build it, you run it. This brings
developers into contact with the day-to-day operation of their
software. It also brings them into day-to-day contact with the
customer. This customer feedback loop is essential for improving the
quality of the service!

-- Werner Vogels in ‘A conversation with Werner Vogels” in ACM Queue, May 2006
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Building
Microservices

Sam Newman's Principles of Microservices




Consumer First

- Encourage conversations
- APl Documentation
- Service Discovery
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Encourage conversations
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APl Documentation




Building
Microservices

Sam Newman's Principles of Microservices




Isolate Failure

- Avoid cascading failures
- Timeouts between components

- Fail fast aka Design for Failure
» Bulkheading / Circuit breakers
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Client Circuit Breaker Supplier Microservice Client Circuit Breaker Supplier Microservice

I i
| | |
| 1

Invoke Service | | Invoke Service | i | Invoke Service |

P
-

v
L

o

Response

3
I )

Response ]

Closed circuit Open circuit

Image source: blogs.halodoc.io
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Are microservices
always the right choice?




Advantages of Microservices

Ship features faster and safer

Scalability

Target security concerns

Allow the interplay of different systems and languages, no
commitment to a single technology stack

Easily deployable and replicable

Embrace uncertainty, automation, and faults

Better alignment with organization structure
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Microservice challenges

- Too many choices NEUSED TO HAVEIMON(
- Delay between investment and payback | S

- Complexities of distributed systems
network latency, faults, inconsistencies
testing challenges

- Monitoring is more complex

. More system states ' i

- More points of failure

- Operational complexity

- Frequently adopted by breaking down a
monolithic application
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Microservices overhead

for less-complex systems, the extra
baggage required to manage
microservices reduces productivity

as complexity kicks in,

productivity starts falling

rapidly

the decreased coupling of
microservices reduces the
attenuation of productivity

Productivity
Microservice

Monolith

Base Complexity
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