
Architecture:
Microservices

17-313 Spring 2025

Foundations of Software Engineering

https://cmu-313.github.io

Michael Hilton, Austin Henley, and Nadia Nahar

https://cmu-313.github.io/

• Teamwork assessments due every Monday

• Midterm 1 on February 27 in class

• We will release sample / practice exams for

recitation next week

Administrivia

Smoking Section

•Last full row

3

Learning Goals

• Contrast monolithic vs. modular software architectures.

• Enumerate various types of modularity including plug-in

architectures, service-oriented architectures, and microservices.

• Reason about tradeoffs of microservices architectures.

• Principles of microservices: how to benefit and avoid their

pitfalls

Outline

● Monoliths vs. Modular Architecture

● Service-based Architecture
• Case Study: Chrome Web Browser

● Microservices

● Principles of Microservices

● Advantages and Challenges of Microservices

Monolithic vs. Modular architecture

Monolithic

Modular

Monolithic styles

Source: https://www.seobility.net (CC BY-SA 4.0)

Modularity comes in many ways

• Plug-in architectures
• Distinct code repositories, linked-in to a monolithic run-time
• Examples:

• Linux kernel modules
• Themes in NodeBB, WordPress
• Language packs for Visual Studio, IntelliJ, Sublime Text

• Separates development, but runs as “one”.

Core System Plugin standard

Plugin 1

Plugin 2

Plugin 3

Modularity comes in many ways

• Plug-in architectures
• Distinct code repositories, linked-in to a monolithic run-time
• Examples:

• Linux kernel modules
• Themes in NodeBB, WordPress
• Language packs for Visual Studio, IntelliJ, Sublime Text

• Separates development, but runs as “one”.

• Service-oriented architectures
• Distinct processes communicating via messages (e.g., Web browsers)
• Separates run-time resource management and failure / security issues.

• Distributed micro-services
• Independent, autonomous services communicating via web APIs
• Separates almost all concerns

SERVICE-BASED ARCHITECTURE

Case Study: Web Browsers

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Multi-threaded browser in single process

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Multi-process browser with IPC

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Service-based browser architecture

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Service-based browser architecture

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Service-based browser architecture

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Navigating to a web site uses service requests

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Navigating to a web site uses service requests

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Navigating to a web site uses service requests

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Navigating to a web site uses service requests

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Navigating to a web site uses service requests

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

https://webperf.tips/tip/browser-process-model/

https://webperf.tips/tip/browser-process-model/

Multi-Process Model Benefits

Security Benefit

Reliability Benefit

Performance Benefit

Multi-Process Costs and Trade-offs

• Memory Overhead
• spinning up new processes requires additional memory allocation

• Process Creation Overhead
• more expensive to create a new process rather than simply a new

thread in an existing process

• IPC Overhead
• communicating across processes is slower than keeping

communication completely localized within a single process

Pros and Cons of Service-based architecture

Pros

• Ability to change components independently

• Independent processes (Isolation, Security)

• Focusing on doing one thing well

Cons
• Increased complexity

• Increased cost and overheads

• Difficult to ensure data consistency across different services

MICROSERVICES

“Small autonomous services that work well together”

Sam Newman

Monolithic vs. Service-based vs. Microservice

Microservices

Netflix Microservices

3
4

(as of 2016)

- Require architecture that can handle various computational
demands

- Need scalability: must support millions of users worldwide
- Need fault tolerance to maintain a seamless user experience
- New features and improvements need to be rolled out rapidly

Why Can't Netflix Use a Monolithic
Architecture?

Netflix Microservices
• User subscriptions

• Banner Ad

• Popular Shows

• Trending Now

• Continue Watching

• My List (saved shows)

• Notifications

• User management

• …

3
6

(as of 2016)

3
7

https://www.youtube.com/watch?v=V_oxbj-a1wQ

https://www.youtube.com/watch?v=V_oxbj-a1wQ

Online Boutique: Guess some microservices

3
9

https://cymbal-shops.retail.cymbal.dev/

Online Boutique: Microservice Architecture

4
0

https://cymbal-shops.retail.cymbal.dev/

Service Language Description

frontend Go
Exposes an HTTP server to serve the website. Does not require signup/login

and generates session IDs for all users automatically.

cartservice C# Stores the items in the user's shopping cart in Redis and retrieves it.

productcatalogservice Go
Provides the list of products from a JSON file and ability to search products and

get individual products.

currencyservice Node.js
Converts one money amount to another currency. Uses real values fetched

from European Central Bank. It's the highest QPS service.

paymentservice Node.js
Charges the given credit card info (mock) with the given amount and returns a

transaction ID.

shippingservice Go
Gives shipping cost estimates based on the shopping cart. Ships items to the

given address (mock)

emailservice Python Sends users an order confirmation email (mock).

checkoutservice Go
Retrieves user cart, prepares order and orchestrates the payment, shipping and

the email notification.

recommendationservice Python Recommends other products based on what's given in the cart.

adservice Java Provides text ads based on given context words.

loadgenerator Python/Locust
Continuously sends requests imitating realistic user shopping flows to the

frontend.

https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/frontend
https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/cartservice
https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/productcatalogservice
https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/currencyservice
https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/paymentservice
https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/shippingservice
https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/emailservice
https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/checkoutservice
https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/recommendationservice
https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/adservice
https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/loadgenerator

Scalability

4
2

Source: http://martinfowler.com/articles/microservices.html

Types of Scaling: Vertical vs. Horizontal

Data Management and Consistency

4
4

Source: http://martinfowler.com/articles/microservices.html

Deployment and Evolution

4
5

Source: http://martinfowler.com/articles/microservices.html

Conway’s Law

“Products” not “Projects”

“Any organization that designs a system (defined
broadly) will produce a design whose structure is a

copy of the organization's communication structure.”

MICROSERVICES: PRINCIPLES

Domain Driven
Modeling

Culture of
Automation

Hide
Implementation

Details

Decentralized
Governance

Deploy
Independently

Consumer First Isolate Failures

Sam Newman’s Principles of Microservices

Domain-driven modeling

Model services around business capabilities

Domain-driven modeling

Domain-driven modeling

Remember Conway’s Law?

Domain Driven
Modeling

Culture of
Automation

Hide
Implementation

Details

Decentralized
Governance

Deploy
Independently

Consumer First Isolate Failures

Sam Newman’s Principles of Microservices

Culture of Automation

• API-Driven Machine Provisioning

• Continuous Delivery

• Automated Testing

Image Source: https://learn.microsoft.com/en-us/azure/architecture/microservices/ci-cd

Continuous Delivery

Domain Driven
Modeling

Culture of
Automation

Hide
Implementation

Details

Decentralized
Governance

Deploy
Independently

Consumer First Isolate Failures

Sam Newman’s Principles of Microservices

Deploy Independently

• One Service Per OS

• Consumer-Driven Contracts

• Multiple coexisting versions

One Service Per OS

Consumer-Driven Contracts

https://medium.com/@japneetkaur11/contract-testing-with-pact-17909b838de9

Multiple coexisting versions

Domain Driven
Modeling

Culture of
Automation

Hide
Implementation

Details

Decentralized
Governance

Deploy
Independently

Consumer First Isolate Failures

Sam Newman’s Principles of Microservices

Hide implementation details

• Design your APIs carefully

• It’s easier to expose some details later than hide them

• Do not share your database!

Hide implementation details

Recall: Encapsulation in OOP

Sharing database: Anti-pattern

Domain Driven
Modeling

Culture of
Automation

Hide
Implementation

Details

Decentralized
Governance

Deploy
Independently

Consumer First Isolate Failures

Sam Newman’s Principles of Microservices

Decentralized Governance

• Mind Conway’s Law

• You Build It, You Run It

• Embrace team autonomy

• Internal Open Source Model

Mind Conway’s Law

“Products” not “Projects”

Domain Driven
Modeling

Culture of
Automation

Hide
Implementation

Details

Decentralized
Governance

Deploy
Independently

Consumer First Isolate Failures

Sam Newman’s Principles of Microservices

Consumer First

• Encourage conversations

• API Documentation

• Service Discovery

Encourage conversations

API Documentation

Domain Driven
Modeling

Culture of
Automation

Hide
Implementation

Details

Decentralized
Governance

Deploy
Independently

Consumer First Isolate Failures

Sam Newman’s Principles of Microservices

Isolate Failure

• Avoid cascading failures

• Timeouts between components

• Fail fast aka Design for Failure
• Bulkheading / Circuit breakers

Image source: blogs.halodoc.io

Closed circuit Open circuit

Are microservices
always the right choice?

7
6

Advantages of Microservices

• Ship features faster and safer

• Scalability

• Target security concerns

• Allow the interplay of different systems and languages, no

commitment to a single technology stack

• Easily deployable and replicable

• Embrace uncertainty, automation, and faults

• Better alignment with organization structure

Microservice challenges

• Too many choices

• Delay between investment and payback

• Complexities of distributed systems
• network latency, faults, inconsistencies

• testing challenges

• Monitoring is more complex

• More system states

• More points of failure

• Operational complexity

• Frequently adopted by breaking down a
monolithic application

Microservices overhead

	Slide 1: Architecture: Microservices
	Slide 2: Administrivia
	Slide 3: Smoking Section
	Slide 4: Learning Goals
	Slide 5: Outline
	Slide 6: Monolithic vs. Modular architecture
	Slide 7
	Slide 8
	Slide 9: Monolithic styles
	Slide 10
	Slide 11: Modularity comes in many ways
	Slide 12: Modularity comes in many ways
	Slide 13: SERVICE-BASED ARCHITECTURE
	Slide 14: Case Study: Web Browsers
	Slide 15: Multi-threaded browser in single process
	Slide 16: Multi-process browser with IPC
	Slide 17: Service-based browser architecture
	Slide 18: Service-based browser architecture
	Slide 19: Service-based browser architecture
	Slide 20: Navigating to a web site uses service requests
	Slide 21: Navigating to a web site uses service requests
	Slide 22: Navigating to a web site uses service requests
	Slide 23: Navigating to a web site uses service requests
	Slide 24: Navigating to a web site uses service requests
	Slide 25
	Slide 26: Multi-Process Model Benefits
	Slide 27: Multi-Process Costs and Trade-offs
	Slide 28: Pros and Cons of Service-based architecture
	Slide 29: MICROSERVICES
	Slide 30
	Slide 31
	Slide 32
	Slide 33: Microservices
	Slide 34: Netflix Microservices
	Slide 35
	Slide 36: Netflix Microservices
	Slide 37
	Slide 38
	Slide 39: Online Boutique: Guess some microservices
	Slide 40: Online Boutique: Microservice Architecture
	Slide 41
	Slide 42: Scalability
	Slide 43: Types of Scaling: Vertical vs. Horizontal
	Slide 44: Data Management and Consistency
	Slide 45: Deployment and Evolution
	Slide 46: Conway’s Law
	Slide 47
	Slide 48: MICROSERVICES: PRINCIPLES
	Slide 49
	Slide 50: Domain-driven modeling
	Slide 51: Domain-driven modeling
	Slide 52: Domain-driven modeling
	Slide 53
	Slide 54: Culture of Automation
	Slide 55: Continuous Delivery
	Slide 56
	Slide 57: Deploy Independently
	Slide 58: One Service Per OS
	Slide 59: Consumer-Driven Contracts
	Slide 60: Multiple coexisting versions
	Slide 61
	Slide 62: Hide implementation details
	Slide 63: Hide implementation details
	Slide 64: Sharing database: Anti-pattern
	Slide 65
	Slide 66: Decentralized Governance
	Slide 67: Mind Conway’s Law
	Slide 68
	Slide 69
	Slide 70: Consumer First
	Slide 71: Encourage conversations
	Slide 72: API Documentation
	Slide 73
	Slide 74: Isolate Failure
	Slide 75
	Slide 76: Are microservices always the right choice?
	Slide 77: Advantages of Microservices
	Slide 78: Microservice challenges
	Slide 79: Microservices overhead

