Architecture:
Microservices

17-313 Spring 2025
Foundations of Software Engineering
https://cmu-313.github.io
Michael Hilton, Austin Henley, and Nadia Nahar

Carnegie

Mellon
University

https://cmu-313.github.io/

Administrivia

« Teamwork assessments due every Monday

« Midterm 1 on February 27 in class

« We will release sample / practice exams for
recitation next week

Smoking Section

e Last full row

DESIGNATED
SMOKING
AREA

Learning Goals

« Contrast monolithic vs. modular software architectures.
« Enumerate various types of modularity including plug-in

architectures, service-oriented architectures, and microservices.

« Reason about tradeoffs of microservices architectures.
- Principles of microservices: how to benefit and avoid their
pitfalls

Software and Societa

s Department

Carnegie
Mellon
University

S3

Outline

Monoliths vs. Modular Architecture

Service-based Architecture
« (Case Study: Chrome Web Browser
Microservices

Principles of Microservices
Advantages and Challenges of Microservices

Software and Societa
Systems Department

Carnegie
Mellon
University

Monolithic vs. Modular architecture

Carnegie

Mellon
University

Carnegie
Mellon
University

Monolithic Architecture

User

interface

Business Data access
logic layer

Database

Ca rnegie
Mellon
University

Software and Societa
Ex et o

5 Department

Monolithic styles

L]
Ll
Frontend E Backend
| = | = -
— —
L™ A
Chignt I-I'\ll-rll‘..i'l'.'l'l Application Serer Datakuse Jm Alp.p“:aﬁnn -

E
' Database

Source: https://www.seobility.net (CC BY-SA 4.0)

Software and Societa !\ii‘ﬁ 1egie
Systems Department e

Monolithic Architecture

User

interface

Business Data access
logic layer

Database

Software and Societa
o

ns Department

Microservice Architecture

User

interface
Micro- Micro-
service service

o —

Micro-
service

i i &

Database Database

Database

Ca rnegie
Mellon
University

Modularity comes in many ways

- Plug-in architectures
« Distinct code repositories, linked-in to a monolithic run-time

« Examples:

* Linux kernel modules

* Themes in NodeBB, WordPress

* Language packs for Visual Studio, IntelliJ, Sublime Text
« Separates development, but runs as “one”.

Core System

Carnegie
Mellon
University

Software and Societa
Systems Department

Modularity comes in many ways

- Plug-in architectures
« Distinct code repositories, linked-in to a monolithic run-time

« Examples:
* Linux kernel modules
* Themes in NodeBB, WordPress
* Language packs for Visual Studio, IntelliJ, Sublime Text

« Separates development, but runs as “one”.

- Service-oriented architectures
« Distinct processes communicating via messages (e.g., Web browsers)
« Separates run-time resource management and failure / security issues.

- Distributed micro-services
« Independent, autonomous services communicating via web APIs
« Separates almost all concerns

Software and Societa {.i?l‘tll‘gil‘
83 D Systems Department Mellon
' University

SERVICE-BASED ARCHITECTURE

Case Study: Web Browsers

Source: https://developers.google.com b/upd browser-pa (CCBY 4.0)

Software and Societa {..Hl.*l:ll.‘gil.‘
Systems Department Mellon

University

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Multi-threaded browser in single process

55}’/!!1 IR NANEAN
-.'?l{///f \I

Carnegie

Mellon
University

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Multi-process browser with IPC

browser-part1 (CC BY 4.0)

Carnegie

Mellon
University

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Service-based browser architecture

Browser Process

Metweork Process

<X =1

Browser Process

-

Ul Process

[P L h e oy 5 T —
-~ Y i - sl = T
= B ey G e T :
. ,_“@ T > - Storage Process L +__+--‘:",__ ::Kq, P GPU Process
Ja, i o LETTT LR . : 1:-' .'C L .
fasssanen (:ﬁ . " - 1." s El n '\.__. LE‘ ;
A "':-, -"; H ..__‘. " ramagh __..:‘}
......... P R -
¥ gt :

Renderer Process

(CCBY 4.0)

Source: https:

Ca rnegie
Mellon
University

Software and Societa
Systems Department

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Service-based browser architecture

Browser Process o
T I a « + af 1:
=] _”_{'fi A
------------ R Renderer Process
e I My
I Plugin Process
= &S
'.‘#"_h_“_f

Source: https:

Software and Societa %‘f?‘“““
Systems Department S AR

ll

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Service-based browser architecture

Randarer Process Renderer Process ey T Y

G’“)f" (: _,.-] f;-‘ﬁgﬁ: Q;-ig _:,':—:Ic_ Hoar, Snap! # & af
. - s Rendarer Process

N / _— e | [T] HEE S
— = L - {= ?ﬁfﬁ: (_.ié) frame b.co ®

Source: https://developers.goog browser-part1 (CC BY 4.0)

Software and Societa C arnegie
83 Systems Department Me! "[]Il

University

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Navigating to a web site uses service requests

S3

ﬁﬁﬁf —_— x%

5 ——

€ 9 & | wwwmysite.com

u‘i _ "‘\D meow

~—

Browser Process

.......
iiii

Is this a search query or URL?

|

It's a URL!

Software and Societa
Systems Department

Carnegie
Mellon
University

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Navigating to a web site uses service requests

S3D

000/ — .

5 ——

"‘ _

u\D

meow

€ 9 & | wwwmysite.com

-~

Browser Process

iiiii
IIIIII
- -

Roger that! _

Y.

-"} MNetwork thread

[] .
- -
*tssenst”

Software and Societa
Systems Department

Carnegie
Mellon
University

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Navigating to a web site uses service requests

S3D

000/ — . S o P — M\ meow

¢ 3+ ¢ [wwwmysite.com |

-~

Browser Process

Let me get a Renderer Process!

iiiii
IIIIII
- -
L
-

JJJ::)*‘ Ul thread :.._:' "'I?‘;‘\
- L
‘ ‘ O O O '!4'-..:-'--} Netw-;:rk thread

[] .
- -
*tssenst”

Software and Societa
Systems Department

Carnegie
Mellon
University

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Navigating to a web site uses service requests

000/ —. —.

*\

P —

meow

!\B

€ + @& [& wwwmysite.com

Browser Process

-Jg

* Please render this page ..

A\

~

Renderer Process

Peeeee > Main thread

) O »)--.

5 ol
Network thread

-

Software and Societa
Systems Department

S3D

Carnegie
Mellon
University

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Navigating to a web site uses service requests

nnﬂ/{ - .

:\ !‘C N

meow

u\g

€ 9 @ | www.othersite.com

-

Browser Process

.
M
a®

$ ~ ¢
=‘ e M. .~
JJJ-..:f---' Ul thre:d

-r.‘
*
L
*l

-

l*.*
L

Unload the page

Please render this page

50O ob

[New Renderer Process

un@

..; Jo

«+ Main thread

L]
iiiiii

Old Renderer Process

(- dpudo

- Main thread

Software and Societa
Systems Department

S3D

Carnegie
Mellon
University

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Network Filesystem Input Graphics
- 11

o

/ \ / I'a
Network Process Browser Process GPU Process

‘. J3Z7 IPC Channels 6 IPC Channels O

|

WebContent Process WebContent Process WebContent Process

<html>

JS

<html>

cm JS

https://webperf.tips/tip/browser-process-model/

Software and Societa !\ii‘ﬁ 1egie
Systems Department e

Multi-Process Model Benefits

Reliability Benefit

Tab 1 Tab 2

Secu r|ty Benefit wWeblontent Procesd Weblontent Process

+ - ==
Security Boundary
chtml > chtals
WebContent Process .
GE Js GE Js Performance Benefit
<html>
W WLk ped . o g il B Y - @ - O
Tab 1 Tab 2
Threads Threads
www.malicious-website.com @ = . P S o
Unaffoctod, resmaims Healthy crashos!
Cannot directly access _ —H—
l www . wikipedia.org www , hoavy - sod-slow-app. com
Network Filesystem x Input Graphics

Unaffected, resains fast Slow!

https://webperf.tips/tip/browser-process-model/

Software and Societa '1[“‘ 1‘“ 1egie
Systems Department yletion

University

Multi-Process Costs and Trade-offs

- Memory Overhead
- spinning up new processes requires additional memory allocation

- Process Creation Overhead

- more expensive to create a new process rather than simply a new
thread in an existing process

- |IPC Overhead

- communicating across processes is slower than keeping
communication completely localized within a single process

Software and Societa
Systems Department

Carnegie
Mellon
University

Pros and Cons of Service-based architecture

Pros

« Ability to change components independently
« Independent processes (Isolation, Security)

« Focusing on doing one thing well

Cons

« Increased complexity

« Increased cost and overheads

« Difficult to ensure data consistency across different services

ss Software and Societa %ii“[];-;i-'f e
Me

Systems Department = .
4 P University

MICROSERVICES

Ca rnegie
Mellon
University

Software and Societa

systems Department

£ Microservices
QN4 /

% S

\1, L

Microsgrvii;es Everywhere

33 Software and Societa [.ilr‘rll‘f_’.it‘

Systems Department Mellon
University

“Small autonomous services that work well together”

Sam Newman

ss Software and Societa %:f“i'l':“-‘gi'-‘
LY L0

Systems Department = .
University

Monolithic vs. Service-based vs. Microservice

| QO gocs
OO0 &8ss

Microservices

NETFLIX ebay a L 4

\jﬁ I
UBER GROUPON COMCAST

Software and Societa %‘fl‘i’l':“‘g e
Systems Department S

University

Netflix Microservices

« Mylist Browse by Languages

the

MENU
@ Moreinto

Top 10 Movies in the US Today

W;‘*"‘ \
('s WEDNESDAY” 5.,

KINDA
PREGNANT

Rocently sdded

New on Netflix

s

DA 3

KIN|
PREGNANT

Because you watched Emily in Paris (:ilr[“_‘gil‘

WCRSNT o w e ~ Mellon

University

Why Can't Netflix Use a Monolithic
Architecture?

S3D

Software and Societa
Systems Department

Require architecture that can handle various computational
demands

Need scalability: must support millions of users worldwide
Need fault tolerance to maintain a seamless user experience
New features and improvements need to be rolled out rapidly

Carnegie
Mellon
University

Netflix Microservices

« User subscriptions
- Banner Ad
« Popular Shows

the : .
MENU « Trending Now
— e - Continue Watching
« My List (saved shows)
* Notifications
* User management

[
i 3 v ANUJA
PREGNAI
B;tiuseyou watched Emily in Paris) ') [lrllf"{..[f"
{ - — [- W6 | -
S UYWL e e . S v v Viellon

University

https://www.youtube.com/watch?v=V_oxbj-alwQ
ss Software and Societa Carnegie

Melle=

Systems Department = .
¥s P University

. Product
‘ + Bucket testing
» Subscriber
' » Recommendations

~ Platform
* Routing
A « Configuration
= . Crypto

. Persistence
‘¥ + Cache
« Database

1 J
-t

https://www.youtube.com/watch?v=V_oxbj-alwQ
s 3 Software and Societa Carnegie

Systems Department %_‘,li;;{:gl;mt}

Online Boutigue: Guess some microservices

ONLINESOUTIU: suo - R ONLINESOUTI0UE s uso - | H

N\

Hot Products Cart (1) (Cempry con Shipping Address

Continue Shepping

E-mail Address

someone@example.com

Sunglasses
o SKU #OLICESPCTZ
Straat Addross
1600 Amphitheatre Parkway
Quantity: 1 $19.99
2ip Code
94043
Shipping $8.99
Gity
Mountain View
Sunglasses Tank Top Watch Total $2898
$19.99 $18.99 $109.99
State Country

CA United States

Payment Method

Credit Card Number

4432801561520454

https://cymbal-shops.retail.cymbal.dev/

Carnegie

D Software and Societa Mellon
Systems Department L |1‘| i\?-lt}-:ilr

Online Boutigque: Microservice Architecture
R

User loadgenerator
HTTP HTTP
frontend checkout
ad recommendation payment email
productcatalog ‘ shipping currency
cart

ﬁ https://cymbal-shops.retail.cymbal.dev/
Redis cache

Ca rnegie
3'+|]i~|]u|:1
University

Service Language Description

Exposes an HTTP server to serve the website. Does not require signup/login
and generates session IDs for all users automatically.

cartservice C# Stores the items in the user's shopping cart in Redis and retrieves it.

Provides the list of products from a JSON file and ability to search products and
get individual products.

Converts one money amount to another currency. Uses real values fetched

frontend Go

productcatalogservice Go

CUTTENCYSEICe Node.js from European Central Bank. It's the highest QPS service.
: . Charges the given credit card info (mock) with the given amount and returns a
paymentservice Node.js :
transaction ID.
shippingservice Go Gives shipping cost estimates based on the shopping cart. Ships items to the

given address (mock)
emailservice Python Sends users an order confirmation email (mock).
Retrieves user cart, prepares order and orchestrates the payment, shipping and

checkoutservice Go the email notification.

recommendationservice Python Recommends other products based on what's given in the cart.
adservice Java Provides text ads based on given context words.

loadgenerator Python/Locust]E?c())rrlltttlannlfjously sends requests imitating realistic user shopping flows to the

Software and Societa Ulll‘lll!'gil!'-
ssl) Mellon

Systems Department =
¥ P Uni

https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/frontend
https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/cartservice
https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/productcatalogservice
https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/currencyservice
https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/paymentservice
https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/shippingservice
https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/emailservice
https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/checkoutservice
https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/recommendationservice
https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/adservice
https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/loadgenerator

Scalability

A monolithic application puts all its
functionality into a single process...

v
We

... and scales by replicating the
monolith on multiple servers

9
w'e [
oV @

Software and Societa

Systems Department

A microservices architecture puts 9

each element of functionality into a

separate service...

... and scales by distributing these services
across servers, replicating as needed.

yd

|¢. =

Carnegie

Mellon

ersity

Types of Scaling: Vertical vs. Horizontal

Vertical Scaling

Increase or decrease the capacity
of existing services/instances.

Software and Societa

Systems Department

Horizontal Scaling

Add more resources like virtual
machines to your system to spread
out the workload across them.

M

Carnegie
Mellon
University

Data Management and Consistency

%38 | %38
= §

Deployment and Evolution

Conway’s Law

ul
specialists

“Any organization that designs a system (defined
broadly) will produce a design whose structure is a
copy of the organization's communication structure

n
.

middleware
specialists

Ev)gv15x] IU

—— e e e e o o Em E —w

. 888
AR

Crodd-functional ieams.., - OFgARILR around capabilitied
Bacause Conway's Law

Siloed functional teams... ... lead to silod application architectures.

Software and Societa
Systems Department

Because Conway's Law “Products” not “Projects”

Carnegie

Mellon

University

YOU BUILD IT

YOU RUN
PANEN | T

“The traditional model is that you take your software to the wall that
separates development and operations, and throw it over and then
forget about it. Not at Amazon. You build it, you run it. This brings
developers into contact with the day-to-day operation of their
software. It also brings them into day-to-day contact with the
customer. This customer feedback loop is essential for improving the
quality of the service!

-- Werner Vogels in ‘A conversation with Werner Vogels” in ACM Queue, May 2006

Software and Societa !u“ 1 'i']'[';;f e
_ G - Vil

Systems rtment

University

MICROSERVICES: PRINCIPLES

Building
Microservices

Sam Newman's Principles of Microservices

Domain-driven modeling

Model services around business capabilities

DISHAGA

Koty s Compiats U S

Ca rnegie
Mellon
University

Domain-driven modeling

Scope of change
3]
Web UI Web Ul : I
i *d—-—
Frontend team <<Presentation>> e 3 Show genre Ul control
Frontend team I I
1
Backend | :
2n Backend s ; E
: _ : [| __Expose current genre, change
Backend team <<Business logic>> Backend team <<Business logic>» : I genre API
1
1 : :
1
Eftaba:f mﬁf | «+———1Store genre choice
DBAs Dala DBAs !)

Software and Societa %‘ﬂﬁ“‘g 1€
Systems Department MElon

Uni ity

Domain-driven modeling

Scope of change

!
|
Frontend 4’- — Show genre Ul control
|
|
|

--------------------- B o

|
|
' Remember Conway’s Law?
' ock Purchase | Profile 21 Expose current genre, change
logic functionality functionality : functionality genre API
!
|

i H : ' :
----- ¥} @
‘ r\ lI 1 I\ lI
. : 4 ! A
Data : 4'-—-S!ore genre choice f kg ' f hd
' ' R] : i AT f 5
e 1 ki ' ; b y 4 ;
£ A & - 8
5% o W M’ : et
Stock team Purchase Customer '
ﬂow team p(Oﬁk team Crads-funetisnal teami_. . orgisiied bound capabibtied
Becawns (onmays Law

D Software and Societa !\ii‘“ 1egie
Systems Department STACERN,
- University

Building
Microservices

Sam Newman's Principles of Microservices

Culture of Automation

API-Driven Machine Provisioning
Continuous Delivery
Automated Testing

Carnegie

Mellon
University

Continuous Delivery

Team A e -
\ Team A —— = Release ——» Production
Team B Team B %n— Release %» Production
%‘b Release Production _—
’’_,-4" candidate) :
Team C \/ Team C = Release ——» Production
AN ——
T > / Team D = Release & Production
eam . /
Monolith Microservices

Image Source: https://learn.microsoft.com/en-us/azure/architecture/microservices/ci-cd

Software and Societa '1[““ 'ﬁ:;;f —
-~ | [l

Systems Department e .
University

Building
Microservices

Sam Newman's Principles of Microservices

Deploy Independently

One Service Per OS
Consumer-Driven Contracts
Multiple coexisting versions

Carnegie

Mellon
University

One Service Per OS

One Service Per 0OS Mutiple Services Per OS

Ca rnegie
Mellon
University

Software and Societa
rtment

Consumer-Driven Contracts

REAL REQUEST

EXPECTED REQUEST
S -

EXPECTED RESPONSE

REAL RESPONSE

SR =

s ES
L
L

S

2

AN 4

Multiple coexisting versions

Building
Microservices

Sam Newman's Principles of Microservices

ide implementation details

- Design your APIs carefully
- It's easier to expose some details later than hide them
- Do not share your database!

Carnegie

Mellon
University

ide implementation details

Recall: Encapsulation in OOP

MyClass
ap.vdute.- youl €—
private vos2
v
Mad:‘i'mli) f-....____/ REST of
pekVan 1() v ook
_(sdtm& & gelfecs)

s 3 Software and Societa !\ii rﬁ:;;f =
¥le
University

Systems Department

Sharing database: Anti-pattern

Service A Service B

Building
Microservices

Sam Newman's Principles of Microservices

Decentralized Governance

Mind Conway's Law

You Build It, You Run It
Embrace team autonomy
Internal Open Source Model

Carnegie

Mellon
University

Mind Conway’s Law

u
specialists

e e o o o o mm mm mm mm mm ——E

I.-F'
middleware
specialists “ F‘ |$ v I$ X || IJ Y
.;\l rrr -
‘\
oo RR]
Crads-functianal L8amE... - GFgaflLed areund capabdlities
i Bacauss Comway™s Lanw

Siloed functional teams... ... lead to silod application architectures,
Because Conway's Law

“Products” not “Projects”

Software and Societa !\ii 'ﬁ:;;f —
Ve

Systems Department

University

YOU BUILD IT

YOU RUN
PANEN | T

“The traditional model is that you take your software to the wall that
separates development and operations, and throw it over and then
forget about it. Not at Amazon. You build it, you run it. This brings
developers into contact with the day-to-day operation of their
software. It also brings them into day-to-day contact with the
customer. This customer feedback loop is essential for improving the
quality of the service!

-- Werner Vogels in ‘A conversation with Werner Vogels” in ACM Queue, May 2006

Software and Societa !u“ 1 'i']'[';;f e
_ G - Vil

Systems rtment

University

Building
Microservices

Sam Newman's Principles of Microservices

Consumer First

- Encourage conversations
- APl Documentation
- Service Discovery

Software and Societa {..i?t‘rll‘gll‘
Systems Department Mellon

University

Encourage conversations

83 Software and Societa !\ii 'ﬁ 1egie
Systems Department CASESEOTUN
! University

APl Documentation

Building
Microservices

Sam Newman's Principles of Microservices

Isolate Failure

- Avoid cascading failures
- Timeouts between components

- Fail fast aka Design for Failure
» Bulkheading / Circuit breakers

s 3 Software and Societa !\ii 'H:;;f —
¥l

Systems Department i i
: P University

Client Circuit Breaker Supplier Microservice Client Circuit Breaker Supplier Microservice

I i
| | |
| 1

Invoke Service | | Invoke Service | i | Invoke Service |

P
-

v
L

o

Response

3
I)

Response]

Closed circuit Open circuit

Image source: blogs.halodoc.io

Ca rnegie
Mellon
University

Software and Societa
S

ms Department

Are microservices
always the right choice?

Advantages of Microservices

Ship features faster and safer

Scalability

Target security concerns

Allow the interplay of different systems and languages, no
commitment to a single technology stack

Easily deployable and replicable

Embrace uncertainty, automation, and faults

Better alignment with organization structure

Software and Societa '_l‘.]ai'lm*g 1e
Systems Department ivlethon

University

Microservice challenges

- Too many choices NEUSED TO HAVEIMON(
- Delay between investment and payback | S

- Complexities of distributed systems
network latency, faults, inconsistencies
testing challenges

- Monitoring is more complex

. More system states ' i

- More points of failure

- Operational complexity

- Frequently adopted by breaking down a
monolithic application

fv:l.a re and Societa !\]iﬁ“h‘“
ystems Department elion

University

Microservices overhead

for less-complex systems, the extra
baggage required to manage
microservices reduces productivity

as complexity kicks in,

productivity starts falling

rapidly

the decreased coupling of
microservices reduces the
attenuation of productivity

Productivity
Microservice

Monolith

Base Complexity

Software and Societa !‘.i.ll.*r'll.‘. it
ssD Systems Department I .]t‘!][]t :

	Slide 1: Architecture: Microservices
	Slide 2: Administrivia
	Slide 3: Smoking Section
	Slide 4: Learning Goals
	Slide 5: Outline
	Slide 6: Monolithic vs. Modular architecture
	Slide 7
	Slide 8
	Slide 9: Monolithic styles
	Slide 10
	Slide 11: Modularity comes in many ways
	Slide 12: Modularity comes in many ways
	Slide 13: SERVICE-BASED ARCHITECTURE
	Slide 14: Case Study: Web Browsers
	Slide 15: Multi-threaded browser in single process
	Slide 16: Multi-process browser with IPC
	Slide 17: Service-based browser architecture
	Slide 18: Service-based browser architecture
	Slide 19: Service-based browser architecture
	Slide 20: Navigating to a web site uses service requests
	Slide 21: Navigating to a web site uses service requests
	Slide 22: Navigating to a web site uses service requests
	Slide 23: Navigating to a web site uses service requests
	Slide 24: Navigating to a web site uses service requests
	Slide 25
	Slide 26: Multi-Process Model Benefits
	Slide 27: Multi-Process Costs and Trade-offs
	Slide 28: Pros and Cons of Service-based architecture
	Slide 29: MICROSERVICES
	Slide 30
	Slide 31
	Slide 32
	Slide 33: Microservices
	Slide 34: Netflix Microservices
	Slide 35
	Slide 36: Netflix Microservices
	Slide 37
	Slide 38
	Slide 39: Online Boutique: Guess some microservices
	Slide 40: Online Boutique: Microservice Architecture
	Slide 41
	Slide 42: Scalability
	Slide 43: Types of Scaling: Vertical vs. Horizontal
	Slide 44: Data Management and Consistency
	Slide 45: Deployment and Evolution
	Slide 46: Conway’s Law
	Slide 47
	Slide 48: MICROSERVICES: PRINCIPLES
	Slide 49
	Slide 50: Domain-driven modeling
	Slide 51: Domain-driven modeling
	Slide 52: Domain-driven modeling
	Slide 53
	Slide 54: Culture of Automation
	Slide 55: Continuous Delivery
	Slide 56
	Slide 57: Deploy Independently
	Slide 58: One Service Per OS
	Slide 59: Consumer-Driven Contracts
	Slide 60: Multiple coexisting versions
	Slide 61
	Slide 62: Hide implementation details
	Slide 63: Hide implementation details
	Slide 64: Sharing database: Anti-pattern
	Slide 65
	Slide 66: Decentralized Governance
	Slide 67: Mind Conway’s Law
	Slide 68
	Slide 69
	Slide 70: Consumer First
	Slide 71: Encourage conversations
	Slide 72: API Documentation
	Slide 73
	Slide 74: Isolate Failure
	Slide 75
	Slide 76: Are microservices always the right choice?
	Slide 77: Advantages of Microservices
	Slide 78: Microservice challenges
	Slide 79: Microservices overhead

