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• Project 2B due tonight (Sep 24th) 

• Project 2B: UI changes require theme repo
• New instructions on Slack (see “#fall-24-announcements”)

• Tl;dr – You need to clone and modify a separate repo for updating some 

front-end components (menus, sidebar, etc.). Submit both repos.

• This is an excellent lesson in software architecture (this lecture) 

• Due to the delay in releasing new instructions, we will not penalize team 

members for missing front-end commits in Sprint 1 (but do it if you can)

• Make sure to document your challenges in the issue/reflections. See Slack for more.

Administrivia



Smoking Section

• Last two full rows
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Learning Goals

● Understand the abstraction level of architectural reasoning
● Appreciate how software systems can be viewed at different 

abstraction levels
● Distinguish software architecture from (object-oriented) 

software design
● Explain the importance of architectural decisions
● Integrate architectural decisions into the software development 

process
● Document architectures clearly, without ambiguity
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Outline

● Views and Abstraction

● Case Study: Autonomous Vehicles

● Software Architecture
• Definitions, Importance

• Software Design vs. Software Architecture

● Architecting software
• Integrating Architectural Decisions into the SW Development Process

• Common Software Architectures

• Documentation
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Source: Pittsburgh Zoning Map 
(https://gis.pittsburghpa.gov/pghzoning/) 



Abstracted views focus on conveying specific 
information

• They have a well-defined purpose

• Show only necessary information

• Abstract away unnecessary details

• Use legends/annotations to remove ambiguity

• Multiple views of the same object tell a larger story
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Case Study: Autonomous Vehicle Software
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Case Study: Apollo

Source: https://github.com/ApolloAuto/apollo

Check out the “side pass” feature from the video:

https://www.youtube.com/watch?v=BXNDUtNZdM4

● Identify in teams of 3 what parts are associated with the side 

pass feature

● Remember to write down your names and Andrew IDs
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https://github.com/ApolloAuto/apollo
https://www.youtube.com/watch?v=BXNDUtNZdM4


Apollo Software Architecture
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Source: https://github.com/ApolloAuto/apollo/blob/v6.0.0/docs/specs/Apollo_5.5_Software_Architecture.md



Apollo Hardware Architecture
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Source: https://github.com/ApolloAuto/apollo/blob/v6.0.0/README.md



Apollo Hardware/Vehicle Overview
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Source: https://github.com/ApolloAuto/apollo/blob/v6.0.0/README.md



Apollo Perception Module
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Apollo ML Models
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Source: Zi Peng, Jinqiu Yang, Tse-Hsun (Peter) Chen, and Lei Ma. 2020. A First Look at the Integration of Machine Learning Models in Complex 

Autonomous Driving Systems: A Case Study on Apollo. In Proceedings of the 28th ACM Joint European Software Engineering Confer ence and 

Symposium on the Foundations of Software Engineering (ESEC/FSE ’20), https://doi.org/10.1145/ 3368089.3417063



Apollo Software Stack
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Source: https://github.com/ApolloAuto/
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Software Architecture

The software architecture of a program or computing system 

is the structure or structures of the system, which 

comprise software elements, the externally visible 

properties of those elements, and the relationships among 

them.
[Bass et al. 2003]
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Note: this definition is ambivalent to 
whether the architecture is known or 

whether it’s any good!



Software Design vs. Architecture

Design Questions

• How do I add a menu item in NodeBB?

• How can I make it easy to create posts in 
NodeBB?

• What lock protects this data?

• How does Google rank pages?

• What encoder should I use for secure 
communication?

• What is the interface between objects?

Architectural Questions

• How does NodeBB support custom 
themes?

• How do I extend NodeBB with a plugin?

• What threads exist and how do they 
coordinate?

• How does Google scale to billions of hits 
per day?

• Where should I put my firewalls?

• What is the interface between 
subsystems?
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https://www.instagram.com/architectanddesign
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• Whether you know it or not
• Whether you like it or not
• Whether it’s documented or not

If you don’t consciously elaborate the architecture, it will evolve 
by itself!

Every software system has an architecture

Architecting Software the SEI Way - Software Architecture Fundamentals: Technical, Business, and Social Influences. Robert Wojcik. 2012



Common Software Architectures



1. Pipes and Filters

© David Garlan and Mary Shaw, CMU/SEI-94-TR-021



Example:
Compilers



2. Object-Oriented Organization

© David Garlan and Mary Shaw, CMU/SEI-94-TR-021



Example: Eclipse IDE



3. Event-Driven Architecture



Example: Node.js



4. Blackboard Architecture

© David Garlan and Mary Shaw, CMU/SEI-94-TR-021



Example: tldraw



5. Layered Systems

© David Garlan and Mary Shaw, CMU/SEI-94-TR-021



Example: Internet Protocol Suite



Why Document Architecture?

● Blueprint for the system
• Artifact for early analysis

• Primary carrier of quality attributes

• Key to post-deployment maintenance and enhancement

● Documentation speaks for the architect, today and 20 

years from today
• As long as the system is built, maintained, and evolved 

according to its documented architecture

● Support traceability.



Guidelines for selecting a notation

● Suitable for purpose
● Often visual for compact representation
● Usually, boxes and arrows
● UML possible (semi-formal), but possibly constraining

• Note the different abstraction level – Subsystems or 
processes, not classes or objects

● Formal notations available
● Decompose diagrams hierarchically and in views
● Always include a legend
● Define precisely what the boxes mean
● Define precisely what the lines mean
● Do not try to do too much in one diagram

• Each view of architecture should fit on a page
• Use hierarchy



Aside: NodeBB Themes Architecture and Project 2
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