
Introduction to
Software Architecture

17-313 Fall 2024

Foundations of Software Engineering

https://cmu-313.github.io

Michael Hilton and Rohan Padhye

https://cmu-313.github.io/

• Project 2B due tonight (Sep 24th)

• Project 2B: UI changes require theme repo
• New instructions on Slack (see “#fall-24-announcements”)

• Tl;dr – You need to clone and modify a separate repo for updating some

front-end components (menus, sidebar, etc.). Submit both repos.

• This is an excellent lesson in software architecture (this lecture)

• Due to the delay in releasing new instructions, we will not penalize team

members for missing front-end commits in Sprint 1 (but do it if you can)

• Make sure to document your challenges in the issue/reflections. See Slack for more.

Administrivia

Smoking Section

• Last two full rows

3

Learning Goals

● Understand the abstraction level of architectural reasoning
● Appreciate how software systems can be viewed at different

abstraction levels
● Distinguish software architecture from (object-oriented)

software design
● Explain the importance of architectural decisions
● Integrate architectural decisions into the software development

process
● Document architectures clearly, without ambiguity

4

Outline

● Views and Abstraction

● Case Study: Autonomous Vehicles

● Software Architecture
• Definitions, Importance

• Software Design vs. Software Architecture

● Architecting software
• Integrating Architectural Decisions into the SW Development Process

• Common Software Architectures

• Documentation

Outline

● Views and Abstraction

● Case Study: Autonomous Vehicles

● Software Architecture
• Definitions, Importance

• Software Design vs. Software Architecture

● Architecting software
• Integrating Architectural Decisions into the SW Development Process

• Common Software Architectures

• Documentation

7

8

9

1
1

Source: Pittsburgh Zoning Map
(https://gis.pittsburghpa.gov/pghzoning/)

Abstracted views focus on conveying specific
information

• They have a well-defined purpose

• Show only necessary information

• Abstract away unnecessary details

• Use legends/annotations to remove ambiguity

• Multiple views of the same object tell a larger story

Outline

● Views and Abstraction

● Case Study: Autonomous Vehicles

● Software Architecture
• Definitions, Importance

• Software Design vs. Software Architecture

● Architecting software
• Integrating Architectural Decisions into the SW Development Process

• Common Software Architectures

• Documentation

Case Study: Autonomous Vehicle Software

14

Case Study: Apollo

Source: https://github.com/ApolloAuto/apollo

Check out the “side pass” feature from the video:

https://www.youtube.com/watch?v=BXNDUtNZdM4

● Identify in teams of 3 what parts are associated with the side

pass feature

● Remember to write down your names and Andrew IDs

15

https://github.com/ApolloAuto/apollo
https://www.youtube.com/watch?v=BXNDUtNZdM4

Apollo Software Architecture

16

Source: https://github.com/ApolloAuto/apollo/blob/v6.0.0/docs/specs/Apollo_5.5_Software_Architecture.md

Apollo Hardware Architecture

17

Source: https://github.com/ApolloAuto/apollo/blob/v6.0.0/README.md

Apollo Hardware/Vehicle Overview

18

Source: https://github.com/ApolloAuto/apollo/blob/v6.0.0/README.md

Apollo Perception Module

19

Apollo ML Models

20

Source: Zi Peng, Jinqiu Yang, Tse-Hsun (Peter) Chen, and Lei Ma. 2020. A First Look at the Integration of Machine Learning Models in Complex

Autonomous Driving Systems: A Case Study on Apollo. In Proceedings of the 28th ACM Joint European Software Engineering Confer ence and

Symposium on the Foundations of Software Engineering (ESEC/FSE ’20), https://doi.org/10.1145/ 3368089.3417063

Apollo Software Stack

2
1

Source: https://github.com/ApolloAuto/

Outline

● Views and Abstraction

● Case Study: Autonomous Vehicles

● Software Architecture
• Definitions, Importance

• Software Design vs. Software Architecture

● Architecting software
• Integrating Architectural Decisions into the SW Development Process

• Common Software Architectures

• Documentation

Software Architecture

The software architecture of a program or computing system

is the structure or structures of the system, which

comprise software elements, the externally visible

properties of those elements, and the relationships among

them.
[Bass et al. 2003]

23

Note: this definition is ambivalent to
whether the architecture is known or

whether it’s any good!

Software Design vs. Architecture

Design Questions

• How do I add a menu item in NodeBB?

• How can I make it easy to create posts in
NodeBB?

• What lock protects this data?

• How does Google rank pages?

• What encoder should I use for secure
communication?

• What is the interface between objects?

Architectural Questions

• How does NodeBB support custom
themes?

• How do I extend NodeBB with a plugin?

• What threads exist and how do they
coordinate?

• How does Google scale to billions of hits
per day?

• Where should I put my firewalls?

• What is the interface between
subsystems?

Outline

● Views and Abstraction

● Case Study: Autonomous Vehicles
● Software Architecture

• Definitions, Importance
• Software Design vs. Software Architecture

● Architecting software
• Integrating Architectural Decisions into the SW Development

Process
• Common Software Architectures
• Documentation

https://www.instagram.com/architectanddesign

h
tt
p
s
:/

/w
w

w
.a

rc
h
d

a
il
y
.c

o
m

/

https://www.mykonosceramica.com/

w
w

w
.o

ve
r-vie

w
.c

om

• Whether you know it or not
• Whether you like it or not
• Whether it’s documented or not

If you don’t consciously elaborate the architecture, it will evolve
by itself!

Every software system has an architecture

Architecting Software the SEI Way - Software Architecture Fundamentals: Technical, Business, and Social Influences. Robert Wojcik. 2012

Common Software Architectures

1. Pipes and Filters

© David Garlan and Mary Shaw, CMU/SEI-94-TR-021

Example:
Compilers

2. Object-Oriented Organization

© David Garlan and Mary Shaw, CMU/SEI-94-TR-021

Example: Eclipse IDE

3. Event-Driven Architecture

Example: Node.js

4. Blackboard Architecture

© David Garlan and Mary Shaw, CMU/SEI-94-TR-021

Example: tldraw

5. Layered Systems

© David Garlan and Mary Shaw, CMU/SEI-94-TR-021

Example: Internet Protocol Suite

Why Document Architecture?

● Blueprint for the system
• Artifact for early analysis

• Primary carrier of quality attributes

• Key to post-deployment maintenance and enhancement

● Documentation speaks for the architect, today and 20

years from today
• As long as the system is built, maintained, and evolved

according to its documented architecture

● Support traceability.

Guidelines for selecting a notation

● Suitable for purpose
● Often visual for compact representation
● Usually, boxes and arrows
● UML possible (semi-formal), but possibly constraining

• Note the different abstraction level – Subsystems or
processes, not classes or objects

● Formal notations available
● Decompose diagrams hierarchically and in views
● Always include a legend
● Define precisely what the boxes mean
● Define precisely what the lines mean
● Do not try to do too much in one diagram

• Each view of architecture should fit on a page
• Use hierarchy

Aside: NodeBB Themes Architecture and Project 2

	Slide 1: Introduction to Software Architecture
	Slide 2: Administrivia
	Slide 3: Smoking Section
	Slide 4: Learning Goals
	Slide 5: Outline
	Slide 6: Outline
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12: Abstracted views focus on conveying specific information
	Slide 13: Outline
	Slide 14: Case Study: Autonomous Vehicle Software
	Slide 15: Case Study: Apollo
	Slide 16: Apollo Software Architecture
	Slide 17: Apollo Hardware Architecture
	Slide 18: Apollo Hardware/Vehicle Overview
	Slide 19: Apollo Perception Module
	Slide 20: Apollo ML Models
	Slide 21: Apollo Software Stack
	Slide 22: Outline
	Slide 23: Software Architecture
	Slide 27: Software Design vs. Architecture
	Slide 35: Outline
	Slide 36
	Slide 37
	Slide 38: Every software system has an architecture
	Slide 39: Common Software Architectures
	Slide 40: 1. Pipes and Filters
	Slide 41: Example: Compilers
	Slide 42: 2. Object-Oriented Organization
	Slide 43: Example: Eclipse IDE
	Slide 44: 3. Event-Driven Architecture
	Slide 45: Example: Node.js
	Slide 46: 4. Blackboard Architecture
	Slide 47: Example: tldraw
	Slide 48: 5. Layered Systems
	Slide 49: Example: Internet Protocol Suite
	Slide 50: Why Document Architecture?
	Slide 60: Guidelines for selecting a notation
	Slide 61: Aside: NodeBB Themes Architecture and Project 2

