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Learning Goals

• Learn to discuss risk in a project

• Strategize about ways to mitigate risk

• Learn to get early feedback to reduce risk

• Find ways to catch our technical errors
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Administrivia. 

• P2B Due Tuesday, February 10, 2026

• Midterm review session TBD

• Midterm Thu Feb 26



Smoking Section

• Last full row
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Risk



Risk



Definition: Risk

Risk is a measure of the potential inability to achieve overall program
objectives within defined cost, schedule, and technical constraints.
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Conrow, E. 2003. Effective Risk Management: Some Keys to Success, 2nd ed. Reston, VA, USA: American Institute of Aeronautics and Astronautics (AIAA).



Risk is defined by two key components

The probability (or likelihood) of failing to 
achieve a particular outcome

8

The consequences (or impact) of failing 
to achieve that outcomes

Conrow, E. 2003. Effective Risk Management: Some Keys to Success, 2nd ed. Reston, VA, USA: American Institute of Aeronautics and Astronautics (AIAA).



Internal vs. External Risk

9

Risks that we can control Risks that we cannot control



Levels of Risk Management

1. Crisis management: Fire fighting; address risks only after they have 

become problems.

2. Fix on failure: Detect and react to risks quickly, but only after they 

have occurred.

3. Risk mitigation: Plan ahead of time to provide resources to cover risks 

if they occur, but do nothing to eliminate them in the first place.

4. Prevention: Implement and execute a plan as part of the software 

project to identify risks and prevent them from becoming problems.

5. Elimination of root causes: Identify and eliminate factors that make it 

possible for risks to exist at all.
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“Rapid Development: Taming Wild Software Schedules,” Steve McConnell, 1996
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Risk Management
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“Rapid Development: Taming Wild Software Schedules,” Steve McConnell, 1996



Team Exercise: Risk Identification

● What risks exist for the scooter app?
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Risk assessment matrix

• MIL-STD-882E
https://www.system-safety.org/Documents/MIL-STD-882E.pdf



Aviation failure impact categories

• No effect – failure has no impact on safety, aircraft operation, or crew 
workload

• Minor – failure is noticeable, causing passenger inconvenience or flight 
plan change

• Major – failure is significant, causing passenger discomfort and slight 
workload increase

• Hazardous – high workload, serious or fatal injuries

• Catastrophic – loss of critical function to safely fly and land

DO-178b, Software Considerations in Airborne Systems and Equipment Certification, RTCA, 
1992



Risk Analysis
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Risk
Probability

(%)

Size of Loss

(weeks)

Risk Exposure

(weeks)

Overly optimistic schedule 50% 5 2.5

Additional features added by marketing (specific features unknown) 35% 8 2.8

Project approval takes longer than expected 25% 4 1.0

Management-level progress reporting takes more developer time than expected 10% 1 0.1

New programming tools do not produce the promised savings 30% 5 1.5

... ... ... ...

Total 12

“Rapid Development: Taming Wild Software Schedules,” Steve McConnell, 1996



Exercise: Risk Analysis

● What is the risk severity for your scooter app?
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Risk Prioritization
Focus on risks with the highest exposure
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Risk Control

● What steps can be taken to avoid or mitigate the risk?
● Can you better understand and forecast the risk?
● Who will be responsible for monitoring and addressing the 

risk?
● Have risks evolved over time?
● Bake risks into your schedule

○ Don’t assume that nothing will go wrong between now and the end of 
the semester! 19



DECIDE Model

Detect that the action necessary
Estimate the significance of the action
Choose a desirable outcome
Identify actions needed in order to achieve the 
chosen option

Do the necessary action to achieve change

Evaluate the effects of the actionhttps://www.faa.gov/regulations_policies/handbooks_manuals/aviation/media/FAA -H-8083-
2.pdf



Discussion: Risk Elimination and Mitigation
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● How can you eliminate/mitigate risk for your scooter app?
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OODA Loop

By Patrick Edwin Moran - Own work, CC BY 3.0, 
https://commons.wikimedia.org/w/index.php?curid=3904554



No matter what you do

• Some idiots won’t follow your rules ☺



Pre-mortems

• "unlike a typical critiquing session, in which project team members 

are asked what might go wrong, the premortem operates on the 

assumption that the 'patient' has died, and so asks what did go 

wrong."



Why do we make misakes? 26



Generalization

• …in the words of psychologist Tom Stafford, we can’t find our typos 

because we’re engaging in a high-level task in writing. Our 

brains generalize simple, component parts to 

focus on complex tasks, so essentially we can’t catch the 

small details because we’re focused on a large task.

27

https://medium.com/swlh/why-we-miss-our-own-typos-96ab2f06afb7



Boredom can give rise to errors, 

adverse patient events, and 

decreased productivity—costly 

and unnecessary outcomes for 

consumers, employees, and 

organizations alike. As a function 

of boredom, individuals may feel 

over-worked or under-employed, 

and become distracted, stressed, 

or disillusioned. Staff who are 

bored also are less likely to 

engage with or focus on their 

work.

28



Cognitive Load

• ...” students who switch back and forth between attending to a 

classroom lecture and checking e-mail, Facebook, and IMing with 

friends”

29



Can we remove human 
error?
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Can we remove human 
error?
Can we catch human error before we ship our code?

Can we automate tasks to prevent problems?

31

catch
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Approach:
Automate what we can
Review what we cannot



Continuous Integration:

Catch mistakes before you push your code! 35



Example CI Pipeline



CI helps us catch bugs earlier
CI makes us less worried about breaking our builds
CI lets us spend less time debugging

“[CI] does have a pretty big impact on [catching bugs]. It allows us to find issues 
even before they get into our main repo, ... rather than letting bugs go 
unnoticed, for months, and letting users catch them.”

Developers say:



Do developers on projects with CI give (more/similar/less) value to 
automated tests?

Developers report:



Do developers on projects with CI give (more/similar/less) value to 
automated tests?
Do projects with CI have (higher/similar/lower) test quality? 

Developers report:



Do developers on projects with CI give (more/similar/less) value to 
automated tests?
Do projects with CI have (higher/similar/lower) test quality? 
Do projects with CI have (higher/similar/lower) code quality?

Developers report:



Do developers on projects with CI give (more/similar/less) value to 
automated tests?
Do projects with CI have (higher/similar/lower) test quality? 
Do projects with CI have (higher/similar/lower) code quality?
Are developers on projects with CI (more/similar/less) productive?

Developers report:



Observation

CI helps us catch errors 
before others see them

(but only if we keep it green)
46



Why keep the build green?



NOTE: Update on CI usage this semester

Status: Number of Teams:

Merged PR’s already, CI is green: 10           

Merged PR’s, CI is red: 2

Have not merged a PR yet: 8



What can we do to keep build from breaking?

• Keep PRs passing CI

• Merge from main before accepting PR

• Keep an eye on flaky tests:
• Rerun? 

• Delete flaky tests?

• Fix CI BEFORE merging new PRs

• Check CI status during code review



Good 



Bad 



CI can run static and dynamic analysis



Static Validation

• Style guides

• Compiler warnings and errors

• Static analysis
• FindBugs

• clang-tidy

• Pylons Webtest

• Code review

https://findbugs.sourceforge.net/
https://findbugs.sourceforge.net/
https://clang.llvm.org/extra/clang-tidy/
https://clang.llvm.org/extra/clang-tidy/
https://clang.llvm.org/extra/clang-tidy/
https://clang.llvm.org/extra/clang-tidy/
https://docs.pylonsproject.org/projects/webtest/en/latest/
https://docs.pylonsproject.org/projects/webtest/en/latest/
https://docs.pylonsproject.org/projects/webtest/en/latest/


Style Guide

• List of environment-specific preferred practices

• Could include:
• Libraries / idioms to use

• Formatting



Style Guide Examples

• https://www.python.org/dev/peps/pep-0008/

• https://github.com/airbnb/javascript

• https://subversion.apache.org/docs/community-
guide/conventions.html

• https://google.github.io/styleguide/cppguide.html

• https://google.github.io/styleguide/pyguide.html

• Linux kernel style guide

https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://github.com/airbnb/javascript
https://github.com/airbnb/javascript
https://subversion.apache.org/docs/community-guide/conventions.html
https://subversion.apache.org/docs/community-guide/conventions.html
https://subversion.apache.org/docs/community-guide/conventions.html
https://subversion.apache.org/docs/community-guide/conventions.html
https://google.github.io/styleguide/cppguide.html
https://google.github.io/styleguide/cppguide.html
https://google.github.io/styleguide/pyguide.html
https://google.github.io/styleguide/pyguide.html
https://www.kernel.org/doc/html/latest/process/coding-style.html
https://www.kernel.org/doc/html/latest/process/coding-style.html


Who writes these style guides?



Who writes these style guides?

(ad hoc ) Self-proclaimed code protectors

(wisdom) Team veteran developers

(copy-paste) Google search for blog posts by experts

(empirical study) Evidence-based analysis of code styles that 

correlate with bugs



For problems we can’t easily 
automate, we can perform 
code review



Boeing Model 299 test on October 30, 
1935. 

• Plane crashed because of 
locked elevator control 
surface (opposite effect of 
MCAS)

• 4 engines were deemed 
“too complex”

• Test pilots developed 
checklists to help them fly



Checklists help manage complex processes

The Checklist: https://www.newyorker.com/magazine/2007/12/10/the-checklist



Dr. Peter Pronovost 

• Inspired by B-17 Story

• After checklist, ten-day line-
infection rate went from eleven 
per cent to zero

• In 15 months, only two line 
infections occurred

• For one hospital, the checklist 
had prevented forty-three 
infections and eight deaths, and 
saved $2M

https://www.wsj.com/articles/SB10001424052748704364004576131963185893084



Difference between Pilot 
and Doctor error?
Which is Developer error more like?



How to create a checklist?

• Start with problems we have seen before

• “Safety regulations are written in blood”

• Justify why this is not automatable

• Not all checklist items need to be very specific

• An item could be “does this team know we are proposing this change”



Activity: Create a checklist

• In pairs, think about dumb mistakes your “friend” made the 

last time they were coding.

• Write your names on a piece of paper.

• Write down two checklist items that would have caught those 

errors.

• Divide into teams: left and right sides of the classroom.

• Which team had the most unique/good entries in their list?



Expectations and Outcomes 
for code review



Motivation

• Linus’s Law: “Given enough eyeballs, all bugs are shallow.”

• - The Cathedral and the Bazaar, Eric Raymond



Code Review at Microsoft

Bacchelli, Alberto and Christian Bird. "Expectations, outcom es, and challenges of modern code review."
Proceedings of the 2013 International Conference on Software Engineering. IEEE Press, 2013.



Outcomes (Analyzing Reviews) 



Mismatch of Expectations and Outcomes 

• Low quality of code reviews

• Reviewers look for easy errors, as formatting issues

• Miss serious errors

• Understanding is the main challenge
• Understanding the reason for a change

• Understanding the code and its context

• Feedback channels to ask questions often needed

• No quality assurance on the outcome



Code Review at Google

• Introduced to “force developers to write code that other 
developers could understand”

• Three benefits:
• checking the consistency of style and design

• ensuring adequate tests 

• improving security by making sure no single developer could commit 
arbitrary code without oversight

Caitlin Sadowski, Emma Söderberg, Luke Church, Michal Sipko, and Alberto Bacchelli. 2018. Modern Code Review:
A Case Study at Google. International Conference on Software Engineering



Reviewing Relationships



The State of Code Review survey



Code Review

• Start with the “big ideas”

• Automate the little things

• Focus on understanding

• Remember a person wrote the code

• Don’t overwhelm the person with feedback



Don’t forget that coders are people with feelings

• A coder’s self-worth is in their artifacts

• CI can avoid embarrassment 

• Identify defects, not alternatives; do not criticize coder

• “you didn’t initialize variable a” -> “I don’t see where variable a is initialized”

• Avoid defending code; avoid discussions of solutions/alternatives

• Reviewers should not “show off” that they are better/smarter

• Avoid style discussions if there are no guidelines

• The coder gets to decide how to resolve fault



Risk Analysis:

• Probability a human makes a mistake: Very Likely

• Severity: ranges, but could be extensive

Solution:

Use CI to catch your mistakes, make you 
look better, and mitigate your risks!

Use Code review to teach and learn

75
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