Build Software Safely!

17-313: Foundations of Software Engineering
https://cmu-313.github.io

Michael Hilton and Josh Sunshine
Spring 2026

N T
Software and Societal (131 negie
Systems Department Mellon

University

https://cmu-313.github.io/
https://cmu-313.github.io/
https://cmu-313.github.io/

Learning Goals

 Learn to discuss risk in a project

» Strategize about ways to mitigate risk
 Learn to get early feedback to reduce risk
* Find ways to catch our technical errors

Carnegie

Software and Societal
S3 Mellon

Systems Department 5 .
University

Administrivia.

» P2B Due Tuesday, February 10, 2026
 Midterm review session TBD
« Midterm Thu Feb 26

Software and Soceta Carnegie

Unn ersity

Smoking Section

e Last full row

DESIGNATED
SMOKING
AREA

DSftw and Soc tI
4 SytmDptm

1S

D Software and Societal Cal‘llegit‘.
Systems Department Mellon

University

Risk

@ 1 em® 0 A

| appreciate the honesty.

Pick a password

Don't reuse your bank password, we didn't
spend a lot on security for this app.

At least 6 characters

8:20 PM - 15 Sep 2018

5,868 Hetweets 15,672 Likes 1 ° .’ “ @ e 6 . 6

O s8 11 58K ¥ X |

Software and Societal (A.‘cll'llt‘glt‘.
Systems Department Mellon

Definition: Risk

Risk is @ measure of the potential inability to achieve overall program
objectives within defined cost, schedule, and technical constraints.

Software and Societal Car negle
53 Dapartme Mellon

University

Risk is defined by two key components

(‘)
The probability (or likelihood) of failing to The consequences (or impact) of failing
achieve a particular outcome to achieve that oUtcomes

YR
Software and Societal I(\-jlﬂlﬁuz‘_%le
s B Systems Dapartorent lellon

University

Internal vs. External Risk

Risks that we can control Risks that we cannot control

Software and Societal (Al‘cll'llt‘git‘.
Systems Department Mellon

University

Levels of Risk Management

1. Crisis management: Fire fighting; address risks only after they have
become problems.

2. Fix on failure: Detect and react to risks quickly, but only after they
have occurred.

3. Risk mitigation: Plan ahead of time to provide resources to cover risks
if they occur, but do nothing to eliminate them in the first place.

4. Prevention: Implement and execute a plan as part of the software
project to identify risks and prevent them from becoming problems.

5. Elimination of root causes: Identify and eliminate factors that make it
possible for risks to exist at all.

Carnegie

Software and Societal =
S‘S » Mellon

Seshems Dapartrens . l
University

Levels of Risk Management

3. Risk mitigation: Plan ahead of time to provide resources to cover risks
if they occur, but do nothing to eliminate them in the first place.

4. Prevention: Implement and execute a plan as part of the software
project to identify risks and prevent them from becoming problems.

5. Elimination of root causes: Identify and eliminate factors that make it
possible for risks to exist at all.

Carnegie

Software and Societal
S‘S) Mellon

Seshems Dapartrens . ‘
University

Risk Management

Hisk Identification

Risk Assessment <& Risk Analysis

|
\ Risk Prioritization
Risk Management
|
Risk-Management Planning
|
Risk Control / Risk Resolution
|
\\F{isk Monitoring
|

S z Software and Societal Car 119018

Wer e SESTRmMS Depantmens I\lell()nr

Team Exercise: Risk Identification

e What risks exist for the scooter app?

Software and Societal Carllegit‘.
Systems Department I\“’le!l()ll
University

Risk assessment matrix

TABLE II1. Risk assessment matrix

RISK ASSESSMENT MATRIX
SEVERITY | catastrophic Critical Marginal Negligible
PROBABI (1) (2) 3) 4)
i o] 3 Medium
Pmt';“" ; ; Madium
m“mf“" . Medium
“ﬁ;’“ Medium Medium
"“F".:"E'I""" Medium Medium Medium
Eliminated
{F)

Carnegie

83 D g;:i?r?{:;;ga??rﬂ:;il https://www.syste m-safety.org/Documents/MIL-STD-88 2E. pdf %Ilell(}n .
JNIV

Aviation failure impact categories

No effect - failure has no impact on safety, aircraft operation, or crew
workload

Minor - failure is noticeable, causing passenger inconvenience or flight
plan change

Major - failure is significant, causing passenger discomfort and slight
workload increase

Hazardous - high workload, serious or fatal injuries

Catastrophic - loss of critical function to safely fly and land

DO-178b, Software Considerations in Airborne Sy stems and Equipment Certification, RTCA,

N n
Software and Societal ({31 negie
Mellon

University

Systems Department

Risk Analysis

Probability Size of Loss Risk Exposure
(%) (WEES) (weeks)
Overly optimistic schedule 50% 5 2.5
Additional features added by marketing (specific features unknown) 35% 8 2.8
Project approval takes longer than expected 25% 4 1.0
Management-level progress reporting takes more developer time than expected 10% 1 0.1
New programming tools do not produce the promised savings 30% 5 1.5
Total 12

Al -~ .
S Software and Societal Car negie

Y Svstems Department Mellon

Exercise: Risk Analysis

e What is the risk severity for your scooter app?

D Software and Societal Carllegit‘.
Systems Department I\“’le!l()ll
University

Risk Prioritization
Focus on risks with the highest exposure

Severity A Categories

Not acceptable
e ALARP
Acceptable
Major
Medum
Minor
No impact
P

L

Highly Undinety Pensitle Likely Very Shely

Probability

So ftw dS t | (ﬂlﬂt‘ gie

Unl\ ersity

Risk Control

e What steps can be taken to avoid or mitigate the risk?

e Canyou better understand and forecast the risk?

e Who will be responsible for monitoring and addressing the
risk?

e Have risks evolved over time?

e Bake risks into your schedule

o Don't assume that nothing will go wrong between now and the end of
the semester!

Al -~ .
83 Software and Societal Car negie

Systems Department Mellon
University

DECIDE Model

Detect that the action necessary
Estimate the significance of the action

Choose a desirable outcome

Ildentify actions needed in order to achieve the
chosen option

Do the necessary action to achieve change
Evaluate the effects of the action

Carnegie

SSD gyf?Nm De F(Jj Stm S Mellon’

University

Discussion: Risk Elimination and Mitigation

e How can you eliminate/mitigate risk for your scooter app?

N T
Software and Societal (131 negie
Systems Department I\“le!l()ll .
University

The Swiss cheese model

Mixed

Regulatory messages

narrowness
Incomplete
procedures

Responsibility
shifting

Production
pressures

Clumsy
technology

Inadequate Attention

training yistractions

Deferred
maintenance

Institutional <K
Organization
Profession
& Team Individual \/7
/'\

Technical

Software and Societal (A.‘cll'llt‘glt‘.
Systems Department Mellon

OODA Loop

Observe

Implicit
Guidance
Unfulding & Control

Circumstance s\ &
" . Feed
o \

bservations |—— -

/}au_ __~Forward
Outside

Information

Unfolding
Interaction
With

Environment

Software and Societal
Systems Department

Orient

Feedback
Feedback
Feedback

Decide
Implicit

Decision
(Hypothesis)

uidance
& Control

Act

—

Feed

Action

(Test)

Forward

Unfolding
Interaction
With

Environment
|

John Boyd's OODA Loop

Carnegie

Mellon
Univ

No matter what you do

« Some idiots won't follow your rules ©

b
.arnegie
Mellon
University

Software and Societal
Systems Department

Pre-mortems

* "unlike a typical critiquing session, in which project team members
are asked what might go wrong, the premortem operates on the
assumption that the 'patient’ has died, and so asks what did go
wrong."

Project Masagesant

Performing a Project
Premortem

by Gary Kbein

Al -~ .
Software and Societal (A/(:II negie
Systems Department Mellon

University

< SOUNTIN AMOMCAN

[]
m m , HOW WE LOOK WITHOUY SEEING,
O W e a e I S a e S 26 FORGEY THINGS 1IN SECONDS, AND
o ARE ALL PRETTY SURL WE ARE

WAY ABOVE AVERAGE

Software and Societal (,f‘cll'llt‘glt‘
Systems Department Mellon

University

Generalization

« ...in the words of psychologist Tom Stafford, we can’t find our typos

because we're engaging in a high-level task in writing. Our

brains generalize simple, component parts to

focus on complex tasks, so essentially we can't catch the
small details because we’re focused on a large task.

Carnegie

Software and Soc t |
Mellon
SsD Systems D epar tm University

Boredom can give rise to errors,
adverse patient events, and
decreased productivity—costly
and unnecessary outcomes for
consumers, employees, and
organizations alike. As a function
of boredom, individuals may feel
over-worked or under-employed,
and become distracted, stressed,
or disillusioned. Staff who are
bored also are less likely to
engage with or focus on their
work.

Drigenal Articles

Boredom in the Workplace: Reasons, Impact, and
Solutions

Michelle Cleary @& , PhD, RN, Jan Sayers , PhD, RN, Violeta Lopez , PhD, RN & Catherine Hungerford , PhD, RN
Pages B3-B0 | Recehved 24 jun 2015, Accepted 13 A 15, Published aoline: 10 Fety 2018

AloEpbed Aupg £l . Pty

W Craci bo et

& Download cination I8 hitpsyfdol.org/10.3109/01 61 28402015, 1084554

mﬁl’lﬁjutﬂu B References 6 Ciaterd (Metrics & Regrings & Permissions -

Abstract Related rese
Boredom in the workplace is not uncommon, and has been discussed widely in | ""':""' H
the academic literature in relation to the associated costs to individuals and] .

organizations. Boredom can give rise to errors, adverse patient events, and “ﬂlﬁdf’“‘ ‘::“I"
Spullover mod el ©

decreased productivity—costly and unnecessary outcomes for consumers, wark mativation
boredom

employees, and organizations alike. As a function of boredom, individuals may

Carnegie

Software and Societal
Systems Department

Mellor
Uni

Cognitive Load

» ...” students who switch back and forth between attending to a

classroom lecture and checking e-mail, Facebook, and IMing with
friends”

¢)
Compoters A Bdacation 42 20110 2411
Contents lists available at SciVerse ScienceDirect
Computers & Education
journal homepage: www. elsevier.com/locate/compedu
DESIGN ATED' Laptop multitasking hinders classroom learning for both users and nearby peers
Faria Sana*, Tina Weston ™, Nicholas J. Cepeda >
sMoKING * Mchtaster Lvwwversaty. Departmens of Mycvology. Nesrescione. br Befwroesr. 1280 Mose Sorevy West, Mamsiion. O (85 @8 L Conada
¥k Universine Deparmment of Mychelogy. 4700 Keele Seer. Tarsare. ON MY 1L, Conade
AR *York Uniwrsity, Laorsh Contre for Ol and Youth Resesn, 4700 Kevle Strove, Tormats, ON MY 17, Connde
ARTICLE INTO ABSTRACT
~ 4 rorvarres

: -
83 Software and Societal Carnegie

Systems Department N’le!l()ﬂ" _
University

Can we remove human
error?

DSftw and Soc tI
Systems Depar tm

catch
Can we remove human

error?

Can we catch human error before we ship our code?.
Can we automate tasks to prevent problems?

Carnegie

Software and Soc t |
I\lell(m
Sys D
SSD ystems Depar tm University

BDiftintio ferts Zractatne fcunduo.
pocare circa s lafipiry oacio poltad ia Padi i namari S la

; g.‘.m comenga das coa ..‘3 240400580 0011254, S 67 294 nmm

J secondo (pacxo af numcro o peemio rea tras aocr a1 La paing (peac By e,
po00 meltiplict cloctupla € I 3 pame rohor st numero el 1o o fpacto by~
i 1a fecondaa (oo o §a mafriplicl cioe gt £ coft fequendo 1n catsc i S nighe ooy
10 ¢t fimilc roras.0a ki al stemero od keonido {210 ¢l nuamero o e Ipaco cipy
ral oc 1Az Daseraily pauma (e 3¢ 1a Propotom Opcrparmcolane oo iKrgm alag
TEEiaTs el 1812 e £ Ieal tonod GUATITO (I3 SCEqUALEITI K kvalquanolowuonoc_sa.g.%
S[4[5] 617 8121 IS ohama ¢ coft in Ime kqui. O e al namcro O g Cacio compercral o BIINCro ol iy
{3 [10]13 [14] 12 rofpaco Goe.s2. 3baucra: L pama fpeak o b propoztionc (operparicnte o fopery
oS8 P42 7|32 parocns rotiag. £ fe al numcroddd quarto fpato d wuekro od fopaimo reformal o
18]3] W ‘_-OF.; 13 :4 30 ;1 74 Danera 13 feoomda fpecic e 13 propeviion nq\lwlpmacc loperviy: partite on
L.‘u 13 Tag 30 z;[‘,,q 33]i0 | @£ kalpumao o qumro o mao N1 NeNO GOt Neac a5 faral Larorda fpegic oelafug
| L 1% T (‘o- paride cios luper QuUIGIIParice quincan£ Ic A numero ol fccondo d nunuro dd g
1zl ﬂ 3936 ".’f"”i THO | o choc.s.a. 2. farat1a pama fpece DL Propomone vaulnplist fuporparnautare Gocog
2 2855, +-‘!—t9,4$° 8379 | fequidleera.£ feaqud medchimo fepeimo cioe. 7.2 tnpka fequialooraOfa feal ny
ez 4]s)ac wfé,éqf 72|85 | rooe wrgofi compara cl mumero D¢ locraso (oe-5; 3 fira Lapuma iPecic oc B paope
sli7]36045 4763 5 (31 90 | MEmuinplic fupapartieecioc oupla fuparbipartie teroise £ ORPAITai prc phach
- ';‘:f“ ”"‘ Blokos adereielatauctafira magione £ i ol quareo lundeanmo quantdo m fosfc farct lalm
s £ | 70/801501190 | ecic oxtea Dupda Apartn partiés GUATLas 0. 1o piu olra vokik proceden
£ coli commme babiamo xxtto ¢ i msimert pofti neta pima riga fecondo lmeddin
g1 comparido ancora le linee inferiox quelic medefime fpecic i oaraniode fin

12 piima bai baguee, qpero i por e fequiraiad. : ;
s Oclrormuo clgoal fe ufa in Daromnare yolee fpecic ve propormiont of
qal 110 {mpoxa alro(a e paatico) knd a pra comodameee proferue o
i eroaaro.£ at ve fug:.tounnumm‘ (NECGTON NUINCTOB DAV
] dam (ytlabaca adicario. 53 como Dicemo ol via ¢ oxt fia i fulamoal 1
care 2¢. (3 ol fisd cba canfarc lefpecie D R menox i pacponc aquelie:
glox incqualita £1E mera Ppoficso ¢ cofi b fuper in pia fpeck ntrpofto.id no mit
e propornionalizatious tra.:” fecte DEVLATLP".
e Anendo abaftancaoe fcoonomiont parkato ¢ quclicotufe finea kel

0
1

]
PRI
o

33 Software and Societal C i
ﬂl'rlegle

Systems Department
Mellon
Universi

Approach:
Automate what we can
Review what we cannot

Continuous Integration:

Catch mistakes before you push your code! O Q

Software and Soc t | Carnegie
SSD Systems D epar tm Mellon

University

Example ClI Pipeline

SAMPLE GITHUB ACTIONS PIPELINE

.github/workflows/pipeline.yml

0 DEVELOPER PUSH 0 oo Q TEST (UNIT & 4 DEPLOY TO
(main branch) INTEGRATION) STAGING —2=

R ARTIFACTS
L =
1
N STAGING
PULL REQUEST @D GITHUB ACTIONS [P ENVIRONMENT
8
> NOTIFICATIONS
(Slack/Email)

ICON LEGEND: Gear=Build, Magnifying Glass=Tes!, Rocket=Deploy, Cloud=Environment

Software and Societal Car Ilt‘.(.’,lt‘
Systems Department %lellm

Developers say:

Cl helps us catch bugs earlier
Cl makes us less worried about breaking our builds

Cl lets us spend less time debugging

“[Cl] does have a pretty big impact on [catching bugs]. It allows us to find issues
even before they get into our main repo, ... rather than letting bugs go
unnoticed, for months, and letting users catch them.”

Carnegie

D Software and Societal ;
Systems Department Me!lon .
University

Developers report:

Do developers on projects with Cl give (more/similar/less) value to
automated tests?

B Higher Similar Lower

0% 25% 50% 75% 100%

Software and Societal (131'118‘_2_;18
Systems Department Mellon

University

Developers report:

Do developers on projects with Cl give (more/similar/less) value to

automated tests?
Do projects with Cl have (higher/similar/lower) test quality?

M Higher Similar Lower
0% 25% 50% 75% 100%

Carnegie

Software and Societal ;
S3 Mellon

Systems Department 5 .
University

Developers report:

Do developers on projects with Cl give (more/similar/less) value to
automated tests?

Do projects with Cl have (higher/similar/lower) test quality?

Do projects with Cl have (higher/similar/lower) code quality?

B Higher Similar Lower
0% 25% 50% 75% 100%

Carnegie

Software and Societal ;
S3 Mellon

Systems Department 5 .
University

Developers report:

Do developers on projects with Cl give (more/similar/less) value to
automated tests?

Do projects with Cl have (higher/similar/lower) test quality?

Do projects with Cl have (higher/similar/lower) code quality?

Are developers on projects with Cl (more/similar/less) productive?

B Higher Similar Lower
0% 25% 50% 75% 100%

Carnegie

Mellon

Software and Societal
Systems Department

University

Observation

Cl helps us catch errors
before others see them

(but only if we keep it green)

Why keep the build green?

WHY KEEP THE BUILD GREEN? (A TALE OF TWO PIPELINES)

SCENARIO 1: BROKEN BUILD (THE RED PATH) SCENARIO 2: GREEN BUILD (THE GREEN PATH)

BROKEN BUILD
(Main Branch Red)

GREEN BUILD
(Main Branch Green)

BLOCKS ENTIRE TEAM:
No confident merging, fear
of existing failures.

CONTINUOQUS INTEGRATION:
Confident merging, trust in tests.

CASCADING EFFECT & ISOLATION:
Developers work on divergent
branches, stop pulling.

POSITIVE MOMENTUM & DISCIPLINE:
Team pulls frequently, maintains
shared, stable foundation.

BROKEN WINDOWS MENTALITY:
“Why fix it? It's already broken."
Discipline erodes.

EVENTUAL INTEGRATION (PAINFUL): 7
Integration becomes progressively -ﬁ

SAFETY NET & CONFIDENCE:
Refactor with trust, catch real
problems immediately.

DEPLOYABLE SOFTWARE (GOAL):
Main branch is always ready.

harder. Opposite of Cl. STABLE FOUNDATION The purpose of Cl.

\ FOR THE TEAM

o R

Al -~ .
83 Software and Societal Carnegie

Systems Department I\“’le!l()lf
Univer

NOTE: Update on Cl usage this semester

Status: Number of Teams:
Merged PR’s already, Cl is green: \/ 10
Merged PR’s, Cl is red: 2
Have not merged a PR yet: 8

DSftw and Soc tI
Systems Depar tm

Carnegie

Mellon
University

What can we do to keep build from breaking?

» Keep PRs passing Cl

« Merge from main before accepting PR
« Keep an eye on flaky tests:

e Rerun? <o Re-runjobs -
* Delete flaky tests?

* Fix CI BEFORE merging new PRs
» Check Cl status during code review

So ftw d S t I Ce dllle,,lt‘

Unn ersity

Good A

[J 1% 40pen « 3Closed Author ~ Label ~ Projects ~ Milestones ~ Reviews ~ Assignee ~ Sort ~

(J i Add Answered Support for Topics v D2
#20 by Kendric285 was merged 3 days ago

O # Lab1v Q2

#18 by Kendric285 was merged 4 days ago

O % Reduced onTopicsLoaded function complexity v
#17 by cnk2024 was merged 2 weeks ago

(J 1% sopen + 0Closed Author ~ Label ~ Projects ~ Milestones ~ Reviews ~ Assignee ~ Sort ~

(J 1% Adding HTML and CSS for Button X (ki
#36 opened 12 hours ago by Isharma-21

O % 50pen + 1Closed Author ~ Label =~ Projects « Milestones « Reviews ~ Assignee « Sort =

[J 13 Reduced parameters of translateEventArgs, patched all dependencies/callers x
#22 by IAmCheese1231 was closed last week

Carnegie

D Software and Societal ;
Systems Department %‘lell()nr .

Ini ity

Bad ¢/

Software and Societal
Systems Department

*

A3 Member of CMU-313/f2

Member of CMU-313

f~ Add mise _ . 2atadata v

#31 by ' = s merged 14 hours ago

1% 0 Open Author ~

i~ Deleted extra unnecessary files %
#29 by [/2 merged 16 hours ago

f~ Refactorgroups and US3 X
#28 by I /2< merged 18 hours ago

(J & Add REST API endpoints for topic resolution and category filtering -
#12) s merged 2 days ago

(J % Featureftopic resolution impl X

#1 1—1erged 3 days ago

I Feature/answer status system v

#10 I - rocd 4 days ago

O Feature/answer status system v

#4 b o - 4 days ago

Label ~

Projects -

Carnegie

S3

Mellon
University

Cl can run static and dynamic analysis

< P Require approval from specific reviewers before merging

Add rule x
Rulesets ensure specific people approve pull requests before they're merged
e All checks have passed Hide all chocks
11 successful checks
v Homework 1 Check | Homework 1 (ubuntu-iatest, 16) (pull_request) Successfulin Tm Details
+ (@) Lint/Lint (ubuntu-latest, 16) (pull_request) Successful n 3m Details
v Test | Test (ubuntu-latest, 16, mongo-dev) (pull_request) Successful in 6m Details
v . Test [Test (ubuntu-latest, 16, mongo) (pull_request) Successful in 5m Details
v Test | Test (ubuntu-latest, 16, redis) (pull_request) Successful in 5m Details
v Test [Test (ubuntu-latest, 16, postgres) (pull_request) Successfulin 6m Detaits
° This branch has no conflicts with the base branch
Merging can be performed automaticaily,
Merge pull request v You can also open this in GitHub Desktop or view command line instructions

Software and Societal (1al'llegit‘.
Systems Department I\“lell()llr .

University

Static Validation

* Style guides
« Compiler warnings and errors
» Static analysis

» FindBugs

« clang-tidy

« Pylons Webtest

e Code review

Carnegie

Mellon

Software and Societal
Systems Department

University

https://findbugs.sourceforge.net/
https://findbugs.sourceforge.net/
https://clang.llvm.org/extra/clang-tidy/
https://clang.llvm.org/extra/clang-tidy/
https://clang.llvm.org/extra/clang-tidy/
https://clang.llvm.org/extra/clang-tidy/
https://docs.pylonsproject.org/projects/webtest/en/latest/
https://docs.pylonsproject.org/projects/webtest/en/latest/
https://docs.pylonsproject.org/projects/webtest/en/latest/

Style Guide

» List of environment-specific preferred practices

e Could include:
e Libraries / idioms to use
* Formatting

Al -~ .
Software and Societal (jdl negie
Systems Department Mellon

University

Style Guide Examples

* https://www.python.org/dev/peps/pep-0008/
» https://github.com/airbnb/javascript

* https://subversion.apache.org/docs/community-
guide/conventions.html

* https.//google.github.io/styleguide/cppguide.html
* https://google.github.io/styleguide/pyguide.htm|

* Linux kernel style guide

Carnegie

Software and Societal ;
S3 Mellon

Systems Department 5 .
University

https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://github.com/airbnb/javascript
https://github.com/airbnb/javascript
https://subversion.apache.org/docs/community-guide/conventions.html
https://subversion.apache.org/docs/community-guide/conventions.html
https://subversion.apache.org/docs/community-guide/conventions.html
https://subversion.apache.org/docs/community-guide/conventions.html
https://google.github.io/styleguide/cppguide.html
https://google.github.io/styleguide/cppguide.html
https://google.github.io/styleguide/pyguide.html
https://google.github.io/styleguide/pyguide.html
https://www.kernel.org/doc/html/latest/process/coding-style.html
https://www.kernel.org/doc/html/latest/process/coding-style.html

Who writes these style guides?

DSftw and Soc tI
83 Systems Dptm

Who writes these style guides?

(ad hoc T &) Self-proclaimed code protectors

(wisdom) Team veteran developers

(copy-paste) Google search for blog posts by experts
(empirical study) Evidence-based analysis of code styles that

correlate with bugs

Software and Soc t I Carnegie
S3D S oms benarime Mellon

University

For problems we can't easily
automate, we can perform
code review

Boeing Model 299 test on October 30,
1935.

* Plane crashed because of
locked elevator control
surface (opposite effect of
MCAS)

* 4 engines were deemed
“too complex”

» Test pilots developed
checklists to help them fly

Carnegie

Software and Soc t |
Mellon
SSD Systems D epar tm University

e —

Checklists help manage complex processes

''''''
. - -

C.CL»\D T

The Checklist: https://www.newyorker.com/magazine/2007/12/10/the-checklist

Al -~ .
Software and Societal (A/(:II negie
Systems Department Mellon

University

The Pronovost
Checklist

Central venous catheters, or

Dr. Peter Pronovost e e

can stay in for days or weeks.
But bacteria can grow in the
line and spread a type of infec-
tion to the bloodstream, which
causes death in one out five
patients who contract it. This
five-step checklist for doctors
and nurses to use before
inserting a line can prevent
infections and death.

1. Wash hands with scap and
water or an akohol cleanser

2. Wear sterile clothing—

a mask, gloves, and hair
covenng—and cover patient
with a sterile drape, except for

* Inspired by B-17 Story

« After checklist, ten-day line-
infection rate went from eleven
per cent to zero

* In 15 months, only two line

infections occurred
a very small hole where the

line goes in

3. Clean patient’s skin with
chiorhexidine (a type of soap)
when the ine s put in

4. Avoid veins in arm and leg,
which are more likely to get
infected than veins in chest

5, Check the line for infection
each day and remove when no
longer needed

https://www.wsj.com/articles/SB10001424052748704364004576131963185893084

Software and Societal (;.al'lltfg‘lt‘
Systems Department l\‘le!l()ll

« For one hospital, the checklist
had prevented forty-three
infections and eight deaths, and
saved $2M

Univ

Difference between Pilot
and Doctor error?

Which is Developer error more like?

How to create a checklist?

» Start with problems we have seen before
« “Safety regulations are written in blood”

« Justify why this is not automatable

 Not all checklist items need to be very specific
« An item could be “does this team know we are proposing this change”

Al -~ .
Software and Societal I(_jldlﬁlegle
Systems Department lelion

University

Activity: Create a checklist

* In pairs, think about dumb mistakes your “friend” made the
last time they were coding.
« Write your names on a piece of paper.

« Write down two checklist items that would have caught those
errors.

* Divide into teams: left and right sides of the classroom.

« Which team had the most unique/good entries in their list?

Software and Societal
Systems Department

Carnegie

Mellon

University

Expectations and Outcomes
for code review

Motivation

* Linus’s Law: “Given enough eyeballs, all bugs are shallow.”
» - The Cathedral and the Bazaar, Eric Raymond

A
Relative cost to fix bugs,
30x £ X
based on time of detection

25x
20x
15x
10x
Sx
Ox - ’

Requirements / X Integration / ysiem Production /

Architecture Coding Component Testing Ac:::!:acc Post-release

Al -~ .
Software and Societal (1(11 negie
Systems Department Mellon

University

Code Review at Microsoft

Ranked Motivations From Developers

B Top B Second [] Third

._
-
L
-

Finding Defects

Code Improvement
Alternative Solutions
Knowledge Transfer
Team Awareness
Improve Dev Process
Avoid Build Breaks
Share Code Ownership

Track Rationale

wm

Team Assessment

§_

400

g

Responses

Bacchelli, Alberto and Christian Bird. "Expectations, outcomes, and challenges of modern code review."
Proceedings of the 2013 International Conference on Software Engineering. IEEE Press, 2013.

Al -~ .
83 Software and Societal Carnegie

Systems Department I\“‘le!l()lf _
Univers

Outcomes (Analyzing Reviews)

Code Improvements
Understanding

Social Communication
Defects

External Impact
Testing

Review Tool
Knowledge Transfer
Misc

0% 10% 20% 30%

Software and Societal (Alal'llt‘glt‘.
Systems Department Mellon

University

Mismatch of Expectations and Outcomes

« Low quality of code reviews
» Reviewers look for easy errors, as formatting issues
» Miss serious errors

» Understanding is the main challenge
* Understanding the reason for a change
« Understanding the code and its context
« Feedback channels to ask questions often needed

* No quality assurance on the outcome

Carnegie

Software and Societal
S3 Mellon

Systems Department 5 .
University

Code Review at Google

* Introduced to “force developers to write code that other
developers could understand”

* Three benefits:
 checking the consistency of style and design

* ensuring adequate tests

« improving security by making sure no single developer could commit
arbitrary code without oversight

Caitlin Sadowski, Emma Soderberg, Luke Church, Michal Sipko, and Alberto Bacchelli. 2018. Modern Code Review:
A Case Study at Google. International Conference on Software Engineering

Carnegie

D Software and Societal ;
Systems Department Me!lon .
University

Reviewing Relationships

Project lead
Education
Maintaining
Maintaining norms
) norms Gatekeepin
Readability Developer PING ~ier
reviewers p -
Education i '
Maintaining ucation
norms g Accident prevention
New team Other team
members members

Software and Societal I(\Al‘dlﬁlt‘.‘.’,lt‘
Systems Department lelion

The State of Code Review survey

What do you believe are the most important benefits of code review?

Improved Software Quakty

Sharing Knowledge Across the Team
Adherence to Coding Sardardw/Conventons
Abdity to Mentor Less-Exceriencad Developers
Increased Collaboration

Reduced Projoct Time/Costs

Ablkty 1o Comply with Regulatory Standards 31%
internal Audits 28%
Abd ty 1o Set Expectatons 8%
Enhanced Customer Satsfacton/Retention 26
Enhanced Moulity of Code 26%
Strengthen Competitive Advantage 20%
IKinciustry Certificatons [
n=1129

Software and Societal
Systems Department

Code Review

« Start with the “big ideas”

« Automate the little things

« Focus on understanding

« Remember a person wrote the code

« Don't overwhelm the person with feedback

Carnegie

Software and Societal
S3 Mellon

Systems Department 5 .
University

Don't forget that coders are people with feelings

« A coder’s self-worth is in their artifacts
e Cl can avoid embarrassment

- |dentify defects, not alternatives; do not criticize coder
* “you didn't initialize variable a” -> “| don't see where variable a is initialized”

 Avoid defending code; avoid discussions of solutions/alternatives
 Reviewers should not “show off” that they are better/smarter
* Avoid style discussions if there are no guidelines

« The coder gets to decide how to resolve fault

Carnegie

Software and Societal
S3 Mellon

Systems Department 5 .
University

Risk Analysis:

* Probability a human makes a mistake: Very Likely
« Severity: ranges, but could be extensive

o —
Solution: B
Use Cl to catch your mistakes, make you
look better, and mitigate your risks! -

Use Code review to teach and learn

-
>

Mtk Unbiedy Powuble Ukely wery Murly
a

Probability

N T
D Software and Societal (A/‘dl negie
Systems Department Mellon

University

	Slide 1: Build Software Safely!
	Slide 2: Learning Goals
	Slide 3: Administrivia.
	Slide 4: Smoking Section
	Slide 5: Risk
	Slide 6: Risk
	Slide 7: Definition: Risk
	Slide 8: Risk is defined by two key components
	Slide 9: Internal vs. External Risk
	Slide 10: Levels of Risk Management
	Slide 11: Levels of Risk Management
	Slide 12: Risk Management
	Slide 13: Team Exercise: Risk Identification
	Slide 14: Risk assessment matrix
	Slide 15: Aviation failure impact categories
	Slide 16: Risk Analysis
	Slide 17: Exercise: Risk Analysis
	Slide 18: Risk Prioritization Focus on risks with the highest exposure
	Slide 19: Risk Control
	Slide 20: DECIDE Model
	Slide 21: Discussion: Risk Elimination and Mitigation
	Slide 22: The Swiss cheese model
	Slide 23: OODA Loop
	Slide 24: No matter what you do
	Slide 25: Pre-mortems
	Slide 26: Why do we make misakes?
	Slide 27: Generalization
	Slide 28
	Slide 29: Cognitive Load
	Slide 30: Can we remove human error?
	Slide 31: Can we remove human error?
	Slide 32
	Slide 33: Approach: Automate what we can Review what we cannot
	Slide 35: Continuous Integration:
	Slide 39: Example CI Pipeline
	Slide 41: Developers say:
	Slide 42: Developers report:
	Slide 43: Developers report:
	Slide 44: Developers report:
	Slide 45: Developers report:
	Slide 46: Observation
	Slide 47: Why keep the build green?
	Slide 48: NOTE: Update on CI usage this semester
	Slide 49: What can we do to keep build from breaking?
	Slide 50: Good 👍
	Slide 51: Bad 👎
	Slide 52: CI can run static and dynamic analysis
	Slide 53: Static Validation
	Slide 54: Style Guide
	Slide 55: Style Guide Examples
	Slide 56: Who writes these style guides?
	Slide 57: Who writes these style guides?
	Slide 58: For problems we can’t easily automate, we can perform code review
	Slide 59: Boeing Model 299 test on October 30, 1935.
	Slide 60: Checklists help manage complex processes
	Slide 61: Dr. Peter Pronovost
	Slide 62: Difference between Pilot and Doctor error?
	Slide 63: How to create a checklist?
	Slide 64: Activity: Create a checklist
	Slide 65: Expectations and Outcomes for code review
	Slide 66: Motivation
	Slide 67: Code Review at Microsoft
	Slide 68: Outcomes (Analyzing Reviews)
	Slide 69: Mismatch of Expectations and Outcomes
	Slide 70: Code Review at Google
	Slide 71: Reviewing Relationships
	Slide 72: The State of Code Review survey
	Slide 73: Code Review
	Slide 74: Don’t forget that coders are people with feelings
	Slide 75: Risk Analysis:

