
Build Software Safely!
17-313: Foundations of Software Engineering

https://cmu-313.github.io

Michael Hilton and Josh Sunshine

Spring 2026

https://cmu-313.github.io/
https://cmu-313.github.io/
https://cmu-313.github.io/

Learning Goals

• Learn to discuss risk in a project

• Strategize about ways to mitigate risk

• Learn to get early feedback to reduce risk

• Find ways to catch our technical errors

2

Administrivia.

• P2B Due Tuesday, February 10, 2026

• Midterm review session TBD

• Midterm Thu Feb 26

Smoking Section

• Last full row

4

Risk

Risk

Definition: Risk

Risk is a measure of the potential inability to achieve overall program
objectives within defined cost, schedule, and technical constraints.

7

Conrow, E. 2003. Effective Risk Management: Some Keys to Success, 2nd ed. Reston, VA, USA: American Institute of Aeronautics and Astronautics (AIAA).

Risk is defined by two key components

The probability (or likelihood) of failing to
achieve a particular outcome

8

The consequences (or impact) of failing
to achieve that outcomes

Conrow, E. 2003. Effective Risk Management: Some Keys to Success, 2nd ed. Reston, VA, USA: American Institute of Aeronautics and Astronautics (AIAA).

Internal vs. External Risk

9

Risks that we can control Risks that we cannot control

Levels of Risk Management

1. Crisis management: Fire fighting; address risks only after they have

become problems.

2. Fix on failure: Detect and react to risks quickly, but only after they

have occurred.

3. Risk mitigation: Plan ahead of time to provide resources to cover risks

if they occur, but do nothing to eliminate them in the first place.

4. Prevention: Implement and execute a plan as part of the software

project to identify risks and prevent them from becoming problems.

5. Elimination of root causes: Identify and eliminate factors that make it

possible for risks to exist at all.

10

“Rapid Development: Taming Wild Software Schedules,” Steve McConnell, 1996

Levels of Risk Management

1. Crisis management: Fire fighting; address risks only after they have

become problems.

2. Fix on failure: Detect and react to risks quickly, but only after they

have occurred.

3. Risk mitigation: Plan ahead of time to provide resources to cover risks

if they occur, but do nothing to eliminate them in the first place.

4. Prevention: Implement and execute a plan as part of the software

project to identify risks and prevent them from becoming problems.

5. Elimination of root causes: Identify and eliminate factors that make it

possible for risks to exist at all.

11

“Rapid Development: Taming Wild Software Schedules,” Steve McConnell, 1996

Risk Management

12

“Rapid Development: Taming Wild Software Schedules,” Steve McConnell, 1996

Team Exercise: Risk Identification

● What risks exist for the scooter app?

13

Risk assessment matrix

• MIL-STD-882E
https://www.system-safety.org/Documents/MIL-STD-882E.pdf

Aviation failure impact categories

• No effect – failure has no impact on safety, aircraft operation, or crew
workload

• Minor – failure is noticeable, causing passenger inconvenience or flight
plan change

• Major – failure is significant, causing passenger discomfort and slight
workload increase

• Hazardous – high workload, serious or fatal injuries

• Catastrophic – loss of critical function to safely fly and land

DO-178b, Software Considerations in Airborne Systems and Equipment Certification, RTCA,
1992

Risk Analysis

16

Risk
Probability

(%)

Size of Loss

(weeks)

Risk Exposure

(weeks)

Overly optimistic schedule 50% 5 2.5

Additional features added by marketing (specific features unknown) 35% 8 2.8

Project approval takes longer than expected 25% 4 1.0

Management-level progress reporting takes more developer time than expected 10% 1 0.1

New programming tools do not produce the promised savings 30% 5 1.5

...

Total 12

“Rapid Development: Taming Wild Software Schedules,” Steve McConnell, 1996

Exercise: Risk Analysis

● What is the risk severity for your scooter app?

17

Risk Prioritization
Focus on risks with the highest exposure

18

Risk Control

● What steps can be taken to avoid or mitigate the risk?
● Can you better understand and forecast the risk?
● Who will be responsible for monitoring and addressing the

risk?
● Have risks evolved over time?
● Bake risks into your schedule

○ Don’t assume that nothing will go wrong between now and the end of
the semester! 19

DECIDE Model

Detect that the action necessary
Estimate the significance of the action
Choose a desirable outcome
Identify actions needed in order to achieve the
chosen option

Do the necessary action to achieve change

Evaluate the effects of the actionhttps://www.faa.gov/regulations_policies/handbooks_manuals/aviation/media/FAA -H-8083-
2.pdf

Discussion: Risk Elimination and Mitigation

21

● How can you eliminate/mitigate risk for your scooter app?

The Swiss cheese model
Regulatory
narrowness

Incomplete
procedures

Mixed
messages

Production
pressures

Responsibility
shifting

Inadequate
training

Attention
distractions

Deferred
maintenance

Clumsy
technology

Institutional

Organization
Profession

& Team Individual

Technical

Modified from Reason, 1999, by R.I. Crook

OODA Loop

By Patrick Edwin Moran - Own work, CC BY 3.0,
https://commons.wikimedia.org/w/index.php?curid=3904554

No matter what you do

• Some idiots won’t follow your rules ☺

Pre-mortems

• "unlike a typical critiquing session, in which project team members

are asked what might go wrong, the premortem operates on the

assumption that the 'patient' has died, and so asks what did go

wrong."

Why do we make misakes? 26

Generalization

• …in the words of psychologist Tom Stafford, we can’t find our typos

because we’re engaging in a high-level task in writing. Our

brains generalize simple, component parts to

focus on complex tasks, so essentially we can’t catch the

small details because we’re focused on a large task.

27

https://medium.com/swlh/why-we-miss-our-own-typos-96ab2f06afb7

Boredom can give rise to errors,

adverse patient events, and

decreased productivity—costly

and unnecessary outcomes for

consumers, employees, and

organizations alike. As a function

of boredom, individuals may feel

over-worked or under-employed,

and become distracted, stressed,

or disillusioned. Staff who are

bored also are less likely to

engage with or focus on their

work.

28

Cognitive Load

• ...” students who switch back and forth between attending to a

classroom lecture and checking e-mail, Facebook, and IMing with

friends”

29

Can we remove human
error?

30

Can we remove human
error?
Can we catch human error before we ship our code?

Can we automate tasks to prevent problems?

31

catch

32

Approach:
Automate what we can
Review what we cannot

Continuous Integration:

Catch mistakes before you push your code! 35

Example CI Pipeline

CI helps us catch bugs earlier
CI makes us less worried about breaking our builds
CI lets us spend less time debugging

“[CI] does have a pretty big impact on [catching bugs]. It allows us to find issues
even before they get into our main repo, ... rather than letting bugs go
unnoticed, for months, and letting users catch them.”

Developers say:

Do developers on projects with CI give (more/similar/less) value to
automated tests?

Developers report:

Do developers on projects with CI give (more/similar/less) value to
automated tests?
Do projects with CI have (higher/similar/lower) test quality?

Developers report:

Do developers on projects with CI give (more/similar/less) value to
automated tests?
Do projects with CI have (higher/similar/lower) test quality?
Do projects with CI have (higher/similar/lower) code quality?

Developers report:

Do developers on projects with CI give (more/similar/less) value to
automated tests?
Do projects with CI have (higher/similar/lower) test quality?
Do projects with CI have (higher/similar/lower) code quality?
Are developers on projects with CI (more/similar/less) productive?

Developers report:

Observation

CI helps us catch errors
before others see them

(but only if we keep it green)
46

Why keep the build green?

NOTE: Update on CI usage this semester

Status: Number of Teams:

Merged PR’s already, CI is green: 10

Merged PR’s, CI is red: 2

Have not merged a PR yet: 8

What can we do to keep build from breaking?

• Keep PRs passing CI

• Merge from main before accepting PR

• Keep an eye on flaky tests:
• Rerun?

• Delete flaky tests?

• Fix CI BEFORE merging new PRs

• Check CI status during code review

Good

Bad

CI can run static and dynamic analysis

Static Validation

• Style guides

• Compiler warnings and errors

• Static analysis
• FindBugs

• clang-tidy

• Pylons Webtest

• Code review

https://findbugs.sourceforge.net/
https://findbugs.sourceforge.net/
https://clang.llvm.org/extra/clang-tidy/
https://clang.llvm.org/extra/clang-tidy/
https://clang.llvm.org/extra/clang-tidy/
https://clang.llvm.org/extra/clang-tidy/
https://docs.pylonsproject.org/projects/webtest/en/latest/
https://docs.pylonsproject.org/projects/webtest/en/latest/
https://docs.pylonsproject.org/projects/webtest/en/latest/

Style Guide

• List of environment-specific preferred practices

• Could include:
• Libraries / idioms to use

• Formatting

Style Guide Examples

• https://www.python.org/dev/peps/pep-0008/

• https://github.com/airbnb/javascript

• https://subversion.apache.org/docs/community-
guide/conventions.html

• https://google.github.io/styleguide/cppguide.html

• https://google.github.io/styleguide/pyguide.html

• Linux kernel style guide

https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://github.com/airbnb/javascript
https://github.com/airbnb/javascript
https://subversion.apache.org/docs/community-guide/conventions.html
https://subversion.apache.org/docs/community-guide/conventions.html
https://subversion.apache.org/docs/community-guide/conventions.html
https://subversion.apache.org/docs/community-guide/conventions.html
https://google.github.io/styleguide/cppguide.html
https://google.github.io/styleguide/cppguide.html
https://google.github.io/styleguide/pyguide.html
https://google.github.io/styleguide/pyguide.html
https://www.kernel.org/doc/html/latest/process/coding-style.html
https://www.kernel.org/doc/html/latest/process/coding-style.html

Who writes these style guides?

Who writes these style guides?

(ad hoc) Self-proclaimed code protectors

(wisdom) Team veteran developers

(copy-paste) Google search for blog posts by experts

(empirical study) Evidence-based analysis of code styles that

correlate with bugs

For problems we can’t easily
automate, we can perform
code review

Boeing Model 299 test on October 30,
1935.

• Plane crashed because of
locked elevator control
surface (opposite effect of
MCAS)

• 4 engines were deemed
“too complex”

• Test pilots developed
checklists to help them fly

Checklists help manage complex processes

The Checklist: https://www.newyorker.com/magazine/2007/12/10/the-checklist

Dr. Peter Pronovost

• Inspired by B-17 Story

• After checklist, ten-day line-
infection rate went from eleven
per cent to zero

• In 15 months, only two line
infections occurred

• For one hospital, the checklist
had prevented forty-three
infections and eight deaths, and
saved $2M

https://www.wsj.com/articles/SB10001424052748704364004576131963185893084

Difference between Pilot
and Doctor error?
Which is Developer error more like?

How to create a checklist?

• Start with problems we have seen before

• “Safety regulations are written in blood”

• Justify why this is not automatable

• Not all checklist items need to be very specific

• An item could be “does this team know we are proposing this change”

Activity: Create a checklist

• In pairs, think about dumb mistakes your “friend” made the

last time they were coding.

• Write your names on a piece of paper.

• Write down two checklist items that would have caught those

errors.

• Divide into teams: left and right sides of the classroom.

• Which team had the most unique/good entries in their list?

Expectations and Outcomes
for code review

Motivation

• Linus’s Law: “Given enough eyeballs, all bugs are shallow.”

• - The Cathedral and the Bazaar, Eric Raymond

Code Review at Microsoft

Bacchelli, Alberto and Christian Bird. "Expectations, outcom es, and challenges of modern code review."
Proceedings of the 2013 International Conference on Software Engineering. IEEE Press, 2013.

Outcomes (Analyzing Reviews)

Mismatch of Expectations and Outcomes

• Low quality of code reviews

• Reviewers look for easy errors, as formatting issues

• Miss serious errors

• Understanding is the main challenge
• Understanding the reason for a change

• Understanding the code and its context

• Feedback channels to ask questions often needed

• No quality assurance on the outcome

Code Review at Google

• Introduced to “force developers to write code that other
developers could understand”

• Three benefits:
• checking the consistency of style and design

• ensuring adequate tests

• improving security by making sure no single developer could commit
arbitrary code without oversight

Caitlin Sadowski, Emma Söderberg, Luke Church, Michal Sipko, and Alberto Bacchelli. 2018. Modern Code Review:
A Case Study at Google. International Conference on Software Engineering

Reviewing Relationships

The State of Code Review survey

Code Review

• Start with the “big ideas”

• Automate the little things

• Focus on understanding

• Remember a person wrote the code

• Don’t overwhelm the person with feedback

Don’t forget that coders are people with feelings

• A coder’s self-worth is in their artifacts

• CI can avoid embarrassment

• Identify defects, not alternatives; do not criticize coder

• “you didn’t initialize variable a” -> “I don’t see where variable a is initialized”

• Avoid defending code; avoid discussions of solutions/alternatives

• Reviewers should not “show off” that they are better/smarter

• Avoid style discussions if there are no guidelines

• The coder gets to decide how to resolve fault

Risk Analysis:

• Probability a human makes a mistake: Very Likely

• Severity: ranges, but could be extensive

Solution:

Use CI to catch your mistakes, make you
look better, and mitigate your risks!

Use Code review to teach and learn

75

	Slide 1: Build Software Safely!
	Slide 2: Learning Goals
	Slide 3: Administrivia.
	Slide 4: Smoking Section
	Slide 5: Risk
	Slide 6: Risk
	Slide 7: Definition: Risk
	Slide 8: Risk is defined by two key components
	Slide 9: Internal vs. External Risk
	Slide 10: Levels of Risk Management
	Slide 11: Levels of Risk Management
	Slide 12: Risk Management
	Slide 13: Team Exercise: Risk Identification
	Slide 14: Risk assessment matrix
	Slide 15: Aviation failure impact categories
	Slide 16: Risk Analysis
	Slide 17: Exercise: Risk Analysis
	Slide 18: Risk Prioritization Focus on risks with the highest exposure
	Slide 19: Risk Control
	Slide 20: DECIDE Model
	Slide 21: Discussion: Risk Elimination and Mitigation
	Slide 22: The Swiss cheese model
	Slide 23: OODA Loop
	Slide 24: No matter what you do
	Slide 25: Pre-mortems
	Slide 26: Why do we make misakes?
	Slide 27: Generalization
	Slide 28
	Slide 29: Cognitive Load
	Slide 30: Can we remove human error?
	Slide 31: Can we remove human error?
	Slide 32
	Slide 33: Approach: Automate what we can Review what we cannot
	Slide 35: Continuous Integration:
	Slide 39: Example CI Pipeline
	Slide 41: Developers say:
	Slide 42: Developers report:
	Slide 43: Developers report:
	Slide 44: Developers report:
	Slide 45: Developers report:
	Slide 46: Observation
	Slide 47: Why keep the build green?
	Slide 48: NOTE: Update on CI usage this semester
	Slide 49: What can we do to keep build from breaking?
	Slide 50: Good 👍
	Slide 51: Bad 👎
	Slide 52: CI can run static and dynamic analysis
	Slide 53: Static Validation
	Slide 54: Style Guide
	Slide 55: Style Guide Examples
	Slide 56: Who writes these style guides?
	Slide 57: Who writes these style guides?
	Slide 58: For problems we can’t easily automate, we can perform code review
	Slide 59: Boeing Model 299 test on October 30, 1935.
	Slide 60: Checklists help manage complex processes
	Slide 61: Dr. Peter Pronovost
	Slide 62: Difference between Pilot and Doctor error?
	Slide 63: How to create a checklist?
	Slide 64: Activity: Create a checklist
	Slide 65: Expectations and Outcomes for code review
	Slide 66: Motivation
	Slide 67: Code Review at Microsoft
	Slide 68: Outcomes (Analyzing Reviews)
	Slide 69: Mismatch of Expectations and Outcomes
	Slide 70: Code Review at Google
	Slide 71: Reviewing Relationships
	Slide 72: The State of Code Review survey
	Slide 73: Code Review
	Slide 74: Don’t forget that coders are people with feelings
	Slide 75: Risk Analysis:

