
Software Quality
17-313 Spring 2025

Foundations of Software Engineering

https://cmu-313.github.io

Michael Hilton, Austin Henley, and Nadia Nahar

Sources:
● Effective Software Testing: A developer's guide. Maurizio Aniche
● Software Quality and Testing - TU Delft
● Introduction to Combinatorial Testing. Rick Kuhn
● Managing Technical Debt. Ipek Ozkaya. CMU SEI

https://cmu-313.github.io/

Administrivia

Smoking Section

•Last two full rows

3

Learning Goals

• Understand the concepts of software quality and technical

debt

• Reflect on personal experiences of technical debt

• Learn best practices for proactively ensuring quality

• Learn techniques for creating functional tests

• Explain the importance of technical debt management

• Learn techniques for managing technical debt

Software Quality

Internal Quality

• Is the code well structured?

• Is the code understandable?

• How well documented?

6

External Quality

• Does the software crash?

• Does it meet the requirements?

• Is the UI well designed?

Testing
Assuring external quality

Terminology

Failure:

“Deviation of the component or system
from its expected delivery, service or
result”

“Manifested inability of a system to
perform required function”

Terminology

Fault / Defect:

“Flaw in component or system that can cause the component or
system to fail to perform its required function”

“A defect, if encountered during execution, may cause a failure of
the component or system”

Terminology

Error:

“A human action that produces an incorrect result”

Terminology

Failure:

• Manifested inability of a system to perform
required function.

Defect (fault):

• missing / incorrect code

Error (mistake)

• human action producing fault

And thus:

• Testing: Attempt to trigger failures
• Debugging: Attempt to find faults given a failure

Bug

Principles of Testing #1:
Avoid the absence of defects fallacy

• Testing shows the presence of defects

• Testing does not show the absence of defects!

• “no test team can achieve 100% defect detection

effectiveness”

Effective Software Testing: A developer's guide. Maurizio Aniche

Principles of Testing #2:
Exhaustive testing is impossible

● A simple function, 1
input, string, max. 26
lowercase characters
+ symbols (@,.,_,-)

● Assume we can use 1
zettaFLOPS: 1021

tests per second

All plants dead

All oceans dry All tests done
~8 billion years

Effective Software Testing: A developer's guide. Maurizio Aniche

Principles of Testing #3:
Start testing early

• To let tests guide design

• To get feedback as early as possible

• To find bugs when they are cheapest to fix

• To find bugs when have caused least damage

Effective Software Testing: A developer's guide. Maurizio Aniche

Principles of Testing #4:
Defects are usually clustered

• “Hot” components requiring frequent change, bad habits,

poor developers, tricky logic, business uncertainty,

innovative, size, …

• Use as heuristic to focus test effort

Effective Software Testing: A developer's guide. Maurizio Aniche

Principles of Testing #5:
The pesticide paradox

“Every method you use to prevent or find bugs leaves a residue of

subtler bugs against which those methods are ineffectual.”

• Re-running the same test suite again and again on a

changing program gives a false sense of security

• Variation in testing

Effective Software Testing: A developer's guide. Maurizio Aniche

Principles of Testing #6:
Testing is context-dependent

Effective Software Testing: A developer's guide. Maurizio Aniche

Principles of Testing #7:
Verification is not validation

Verification

• Does the software system meet the
requirements specifications?

• Are we building the software
right?

Validation

• Does the software system meet the
user's real needs?

• Are we building the right
software? Credit: Philip Koopman

Effective Software Testing: A developer's guide. Maurizio Aniche

How to create tests?

Test design techniques

• Opportunistic/exploratory testing: Add some unit tests, without much

planning

• Specification-based testing ("black box"): Derive test cases from

specifications

• Boundary value analysis

• Equivalence classes

• Combinatorial testing

• Random testing

• Structural testing ("white box"): Derive test cases to cover implementation

paths

• Line coverage, branch coverage

Specification Testing

Tests are based on the specification

Advantages:

• Avoids implementation bias

• Robust to changes in the implementation

• Tests don’t require familiarity with the code

• Tests can be developed before the implementation

What about exhaustive testing?

Idea: Try all values!

• age: int (2 - 117) years
• datetime: DateTime (hh:mm + M/D/Y)
• rideTime: int (in minutes, 1 - 2 Hours)
• is_public_holiday: bool (2 values)

116 x 1440 (minutes per day) x 1826 (days in the next 5 years)
x 120 (ride time) x 2

~ 72 Billion test cases

What about exhaustive testing?

Exhaustive testing is usually impractical – even for trivially
small problem

Key problem: choosing test suite

• Small enough to finish in a useful amount of time
• Large enough to provide a useful amount of validation

Alternative: Heuristics

Equivalence Partitioning

• Identify sets with same behavior (equivalence class)

• Try one input from each set

• Equivalence classes derived from specifications (e.g.,

cases, input ranges, error conditions, fault models)

• Requires domain-knowledge

Example: Equivalence Classes?

Boundary-value analysis

Key Insight: Errors often occur at the boundaries of a variable
value

• For each variable, select:
• minimum,
• min+1,
• medium,

• max-1,
• maximum;
• possibly also invalid values min-1, max+1

Boundary-value analysis

Variable Domains

age <2, [2,17],

[18,65], >65

ride_datetime weekdays peak

and off-peak,

weekends peak

and off-peak

…

ride_duration <5, >=5

is_public_holiday F, T

Pairwise testing

Key Insight: some problems only occur as the result of

an interaction between parameters/components

• Examples of interactions:
• The bug occurs for senior citizens traveling on weekends (pairwise

interaction)
• The bug occurs for senior citizens traveling on weekends during

peak hours (3-way interaction)
• The bug occurs for adults traveling long trips during public holidays

that are weekends. (4-way interaction)
• Claim: Considering pairwise interactions finds about 50% to

90% of defects

When to create and run tests?

The V-Model

Group Activity

• We are taking over the reigns of NodeBB

• Come up with a testing protocol for the system
• What should we prioritize testing?
• How should we test? (run it? unit test? …?)
• When should we write new tests?
• How do we know when to stop testing?
• If we discover a bug, what then?

If we spend all our time testing… how will we ever add new features?!

Technical Debt

A better analogy?: Pollution

Technical debt

https://martinfowler.com/bliki/TechnicalDebt.html

Internal quality makes it easier to add
features

3
9

Examples of technical debt

Technical Debt != Bad Internal Quality

“In software-intensive systems, technical debt consists of design
or implementation constructs that are expedient in the short
term but that set up a technical context that can make a
future change more costly or impossible. “

“Technical debt is a contingent liability whose impact is limited
to internal system qualities – primarily, but not only,
maintainability and evolvability.”

Managing Technical Debt: Reducing Friction in Software Development. Philippe Kruchten, Robert Nord, Ipek Ozkaya

High internal quality is an investment

42

What actions cause technical debt?

What actions cause technical debt?

Tightly-coupled components

Poorly-specified requirements

Business pressure

Lack of process

Lack of documentation

44

Lack of automated testing

Lack of knowledge

Lack of ownership

Delayed refactoring

Multiple, long-lived
development branches

...

Bitrot: Even if your software doesn’t
change, it will break over time

45

CREATES TECHNICAL

DEBT

Bad: Too much technical debt

• Bad code can be demoralizing

• Conversations with the client become awkward

• Team infighting

• Turnover and attrition

• Development speed

• …

47

How to manage technical debt?

Managing Technical Debt: Reducing Friction in Software Development.
Philippe Kruchten, Robert Nord, Ipek Ozkaya

Principles of Technical Debt
Management

1. Technical debt is a useful rhetorical concept for dialogue.

2. If you do not incur any form of interest, then you probably do
not have actual technical debt.

3. All systems have technical debt.

4. Technical debt must trace to the system.

5. Technical debt is not synonymous with bad quality.

6. Architecture technical debt has the highest cost of ownership.

7. All code matters!

8. Technical debt has no absolute measure.

9. Technical debt depends on the future evolution of the system.

When should we reduce technical
debt?

Managing technical debt

Organizations needs to address the following challenges

continuously:

1. Recognizing technical debt

2. Making technical debt visible

3. Deciding when and how to resolve debt

4. Living with technical debt

Not all technical debt is the same

53

Reckless Prudent

Deliberate
“We don’t have time for

design”

“We must ship now and

deal with consequences

(later)”

Inadvertent “What’s layering?”
“Now we know how we

should have done it”

https://martinfowler.com/bliki/TechnicalDebtQuadrant.html

How can we avoid (inadvertent)
technical debt?

Common Anti-Patterns

• Not having a QA process! Or no-one follows it

55

Common Anti-Patterns

• Not having a QA process! Or no-one follows it

• Bad version control practices

• Everyone commits to the main branch

• Long-lived feature branches

• Huge PRs

56

Common Anti-Patterns

• Not having a QA process! Or no-one follows it

• Bad version control practices

• Slow and encumbering QA processes

• changes take forever to get merged

• time could be better spent on new features

57

Common Anti-Patterns

• Not having a QA process! Or no-one follows it

• Bad version control practices

• Slow and encumbering QA processes

• Reliance on repetitive manual labor

• focused on superficial problems rather than structural ones

• results may vary (e.g., manual testing)

• mistakes will happen!

58

Case Study: Knight Capital

59

In layman's terms, Knight Capital Group realized a $460 million loss in 45-minutes.

Remember, Knight only has $365 million in cash and equivalents. In 45-minutes Knight

went from being the largest trader in US equities and a major market maker in the

NYSE and NASDAQ to bankrupt.

Summary:

• Software Quality is hard

• Life involves tradeoffs

	Slide 1: Software Quality
	Slide 2: Administrivia
	Slide 3: Smoking Section
	Slide 4: Learning Goals
	Slide 5: Software Quality
	Slide 6: Internal Quality
	Slide 7: Testing
	Slide 8
	Slide 9: Terminology
	Slide 10: Terminology
	Slide 11: Terminology
	Slide 12: Terminology
	Slide 13: Principles of Testing #1: Avoid the absence of defects fallacy
	Slide 14: Principles of Testing #2: Exhaustive testing is impossible
	Slide 15: Principles of Testing #3: Start testing early
	Slide 16: Principles of Testing #4: Defects are usually clustered
	Slide 17: Principles of Testing #5: The pesticide paradox
	Slide 18: Principles of Testing #6: Testing is context-dependent
	Slide 19: Principles of Testing #7: Verification is not validation
	Slide 20: How to create tests?
	Slide 21: Test design techniques
	Slide 22: Specification Testing
	Slide 23
	Slide 24: What about exhaustive testing?
	Slide 25: What about exhaustive testing?
	Slide 26: Equivalence Partitioning
	Slide 27: Example: Equivalence Classes?
	Slide 28: Boundary-value analysis
	Slide 29: Boundary-value analysis
	Slide 30: Pairwise testing
	Slide 31: When to create and run tests?
	Slide 32: The V-Model
	Slide 33: Group Activity
	Slide 36: Technical Debt
	Slide 37: A better analogy?: Pollution
	Slide 38: Technical debt
	Slide 39: Internal quality makes it easier to add features
	Slide 40: Examples of technical debt
	Slide 41: Technical Debt != Bad Internal Quality
	Slide 42: High internal quality is an investment
	Slide 43: What actions cause technical debt?
	Slide 44: What actions cause technical debt?
	Slide 45: Bitrot: Even if your software doesn’t change, it will break over time
	Slide 46
	Slide 47: Bad: Too much technical debt
	Slide 48: How to manage technical debt?
	Slide 49: Principles of Technical Debt Management
	Slide 50: When should we reduce technical debt?
	Slide 51
	Slide 52: Managing technical debt
	Slide 53: Not all technical debt is the same
	Slide 54: How can we avoid (inadvertent) technical debt?
	Slide 55: Common Anti-Patterns
	Slide 56: Common Anti-Patterns
	Slide 57: Common Anti-Patterns
	Slide 58: Common Anti-Patterns
	Slide 59: Case Study: Knight Capital
	Slide 60: Summary:

