S3

Software and Societal
Systems Department

Software Testing

17-313: Foundations of Software Engineering
https://cmu-313.github.io

Michael Hilton and Josh Sunshine
Spring 2026

Carnegie
Mellon
University

https://cmu-313.github.io/
https://cmu-313.github.io/
https://cmu-313.github.io/

Learning Goals

» Distinguish between verification and validation
* Articulate the value of testing

* Evaluate trade-offs in the testing pyramid

* Design and refactor code for testability

N T
Software and Societal (;:al negie
Systems Department Mellon

University

Smoking Section

e Last full row

DESIGNATED
SMOKING
AREA

DSftw and Soc tI
Systems Depar tm

Project 2B and 2C

* Project 2B was due yesterday
» Many of you didn't finish your issue
« That is too be expected, time estimation is hard.

 Project 2C is due February 26.
» We do expect you to finish your issue in this sprint.
« New requirement: write tests (today’s topic)

N T
Software and Societal (181 negie
Systems Department Mellon

University

|

B WARNING: | S S
CI IS ONLY RS GOOD = ' —
AS YOUR TESTS

- — — e — o — —c—

TEST:

HEIGHT . % P
HEIGHT — el 4
SENSOR | = 3

S0 MECHANISM
M CHECK

Software and Societal Carnegle
Systems Department Me!lon .
Universi

Software Quality

D Software and Societal Cal'llegit‘.
Systems Department Me!lon
University

Internal Quality External Quality

* Is the code well structured? » Does the software crash?
* Is the code understandable? * Does it meet the requirements?
« How well documented? * Is the Ul well designed?

: -
83 Software and Societal Carnegie

Systems Department Mellmi': .

Testing Focuses on
External Quality

Specification Testing

Tests are based on the specification
Advantages:

Avoids implementation bias

Robust to changes in the implementation

Tests don't require familiarity with the code

Tests can be developed before the implementation

N T
Software and Societal (181 negie
Systems Department Mellon

University

nnn

1
2 Compute the price of a bus ride:

3 - Children under 2 ride for free.

4 - Children under 18 and senior citizens over 65 pay half the fare
5 - All others pay the full fare of $3.

6 - On weekdays (Monday to Friday), between 7am and 9am and

7 between 4pm and 6pm, a peak surcharge of $1.5 is added

8 to the fare.

9 - During weekends (Saturday and Sunday), there is a flat rate

10 of $2 for all riders, except for children under 2.

11 - Short trips under 5 minutes during off-peak times are free,

12 except on weekends.

13 - If the trip occurs on a public holiday, a special holiday surcharge
14 of $2 is added, ignoring other surcharges and the weekend flat rate.
15 | S%X

16 def bus_ticket_price(age: int,

17 ride_datetime: datetime,

18 ride_duration: int,

19 is_public_holiday: bool) -> float:

20

Software and Societal (;.al'lltfg‘lt’
Systems Department Mellon

University

Testing Pyramid

« Unit Testing: Testing the smallest testable parts (e.g. functions,
objects, modules, or services) in isolation.

 Integration Testing: Verifying that different units work together
correctly.

« System/End-to-End (E2E) Testing: Testing the fully integrated
application from the user’s perspective.

- The Pyramid Trade-off: We want many unit tests (fast, cheap,
specific) and fewer E2E tests (slow, expensive, brittle).

Al -~ .
Software and Societal Car negie
Systems Department Mellon

University

Program Under Test: Wordle

» Guessing game

« User guesses a 5-letter
English word

« After each guess, the tiles
change color to show how
close guesser is to secret

word

Software and Societal (A.‘cll'llt‘glt‘.
Systems Department Me!l(m .
University

Program Under Test: Wordle

 Green: The letter is in the
word and in the correct
spot.

e Yellow: The letter is in the
word but in the wrong
spot.

« Black: The letter is not in
the word in any spot.

Software and Societal (Al‘cll'llt‘glt‘.
Systems Department Mellon

University

Activity: Write Wordle Examples

* Your job is to create unit Key rules:

Feztc?tifcc))r: the mark_guess . Green: The letter is in the
u ' word and in the correct
* mark_guess takes two spot.

arguments: guess_word * Yellow: The letter is in the

and secret_word. word but in the wrong
* mark_guess returns either spot.

artupnIeYSf“c'?\I(or”s" (G fgé o - Black: The letter is not in
greet, 1107 TEow, d the word in any spot.

for Black) or Error

Software and Societal
Systems Department

Carnegie

Mellon
University

What makes a test good?

83 Software and Societal Carnegie

Systems Department Mellon _

Equivalence Partitioning

Identify sets with same behavior (equivalence class)
Try one input from each set

Equivalence classes derived from specifications (e.g.,
cases, input ranges, error conditions, fault models)
Requires domain-knowledge

Al -~ .
Software and Societal (J’al negie
Systems Department Mellon

University

Example: Equivalence Classes?

s #eX
2 Compute the price of a bus ride:
3 - Children under 2 ride for free.
4 Children under 18 and senior citizens over 65 pay half the fare
5 - All others pay the full fare of $3.
6 - On weekdays (Monday to Friday), between 7am and 9am and
7 between 4pm and 6pm, a peak surcharge of $1.5 is added
8 to the fare.
9 - During weekends (Saturday and Sunday), there is a flat rate
10 of $2 for all riders, except for children under 2.
11 - Short trips under 5 minutes during off-peak times are free,
12 except on weekends.
13 IT the trip occurs on a public holiday, a special holiday surcharge
14 of $2 is added, ignoring other surcharges and the weekend flat rate.
15 | e
16 def bus_ticket_price(age: int,
17 ride_datetime: datetime,
18 ride_duration: int,
19 is_public_holiday: bool) -> float:

Software and Societal (Alal'llt‘glt‘.
Systems Department %‘lell(}l

Boundary-value analysis

Key Insight: Errors often occur at the boundaries of a variable
value

For each variable, select:
minimum,
min+1,
medium,
max-1,
maximum;
possibly also invalid values min-1, max+1

Al -~ .
Software and Societal (jdl negie
Systems Department Mellon

University

i S W=

~ O

10
11
12
13
14
15
16
17
18
19
20

"o

Boundary-value analysis

Compute the price of a bus ride:

e

Children under 2 ride for free.

Children under 18 and senior citizens over 65 pay half the fare
All others pay the full fare of $3.

On weekdays (Monday to Friday), between 7am and 9am and
between 4pm and 6pm, a peak surcharge of $1.5 is added

to the fare.

During weekends (Saturday and Sunday), there is a flat rate

of $2 for all riders, except for children under 2.

Short trips under 5 minutes during off-peak times are free,
except on weekends.

IT the trip occurs on a public holiday, a special holiday surcharge

of $2 is added, ignoring other surcharges and the weekend flat rate.

def bus_ticket_price(age: int,

ride_datetime: datetime,
ride duration: int,
is_public_holiday: bool) -> float:

Software and Societal
Systems Department

Variable

Domains

age

<2[[2’ 17]I
[18,65], >65

ride_datetime

weekdays peak
and off-peak,
weekends peak

and off-peak
ride_duration <5, >=5
is_public_holiday | F, T

Carnegie
Mellon
Univ

Pairwise testing

Key Insight: some problems only occur as the result of
an interaction between parameters/components

Examples of interactions:
- The bug occurs for senior citizens traveling on weekends (pairwise

interaction)
The bug occurs for senior citizens traveling on weekends during
peak hours (3-way interaction)
The bug occurs for adults traveling long trips during public holidays
that are weekends. (4-way interaction)

Claim: Considering pairwise interactions finds about 50% to

90% of defects

Al -~ .
D Software and Societal Car negie
Systems Department Mellon

University

Test Driven Development

Tests first!

Popular agile technique

Write tests as specifications before code
Never write code without a failing test
Claims:

fails

Design approach toward testable design
Avoid writing unneeded code

Higher product quality (e.g. better code,
less defects)

Higher test suite quality

Higher overall productivity

Software and Societal I(\Al‘dlﬁlt‘.‘.’,lt‘
Systems Department lelion
'S

sity

Discussion: How do |
design my program so it is
testable?

Design testing principles

* Purity

» Determinism

« Small input and output sets

» Well-definite input and output sets

Carnegie

Software and Societal
S3 Mellon

Systems Department 5 .
University

Principles of Testing

83 Software and Societal Carnegie

Systems Department I\“’le!l()lf
Univ

Principles of Testing #1:
Avoid the absence of defects fallacy

Testing shows the presence of defects

Testing does not show the absence of defects!
“no test team can achieve 100% defect detection
effectiveness”

Effective Software Testing: A developer's guide. Maurizio Aniche

Software and Soceta Carnegie

Unn ersity

What about exhaustive testing?

Idea: Try all values!

age:int (2-117)years

datetime: DateTime (hh:mm + M/D/Y)
rideTime: int (in minutes, 1 - 2 Hours)
is_public_holiday: bool (2 values)

116 x 1440 (minutes per day) x 1826 (days in the next 5 years)
x 120 (ride time) x 2 ~ 72 Billion test cases

Al -~ .
83 Software and Societal Car negie

Systems Department Mellon
University

What about exhaustive testing?

Exhaustive testing is usually impractical - even for trivially
small problem

Key problem: choosing test suite

Small enough to finish in a useful amount of time
Large enough to provide a useful amount of validation

Alternative; Heuristics

S3

Software and Societal
Systems Department

Carnegie
Mellon

University

Principles of Testing #2:
Exhaustive testing is impossible

1 def 1s_valid_email(email: str) -> bool:

. . Altoceans All tests done
o A simple functlon, 1 Allplants dry ~8 b!llon
INnput, string, max. 26 Honr years

lowercase characters B
Life Cycle
+ symbols (@, ., _,-) of the Sun

e Assume we can use 1
zettaFLOPS: 1021 tests

8 9

p e r SECO N d In Billions of Years (approx.)

Effective Software Testing: A developer's guide. Maurizio Aniche

D Software and Societal Carnegle
Systems Department Mellon

University

Principles of Testing #3:
Start testing early

To let tests guide design

To get feedback as early as possible

To find bugs when they are cheapest to fix

To find bugs when have caused least damage

Effective Software Testing: A developer's guide. Maurizio Aniche

Software and Soc t | Carnegie
S3D S oms benarime Mellon

University

Principles of Testing #4:
Defects are usually clustered

“Hot” components requiring frequent change, bad habits,

poor developers, tricky logic, business uncertainty,
Innovative, size, ... AT ARE o0 LORKING 007

i<t TRYING TO FiX THE. PROBLEMS T
Use as heuristic to focus test effort il
THE PROBLEMS I CREATED \JHEN
LTRIED T FiX THE PROBLEMS
G I CREATED LHEN...

/

Effective Software Testing: A developer's guide. Maurizio Aniche

Al -~ .
Software and Societal Car negie
Systems Department

Mellon

University

Principles of Testing #5:
The pesticide paradox

“Every method you use to prevent or find bugs leaves a residue of
subtler bugs against which those methods are ineffectual.”

Re-running the same test suite again and again on a
changing program gives a false sense of security
Variation in testing

Effective Software Testing: A developer's guide. Maurizio Aniche

Al -~ .
Software and Societal (J’al negie
Systems Department Mellon

University

Principles of Testing #6:
Testing is context-dependent

HOW SAFE IS
SAFE ENOUGH?

Measuring and Predicting
Autonomous Vehicle Safety

GAME
TESTING
ALL IN ONE

Effective Software Testing: A developer's guide. Maurizio Aniche

Al -~ .
Software and Societal Car negie
Systems Department Me!lon .
University

Principles of Testing #7:
Verification is not validation

Verification

Does the software system meet the
requirements specifications?

Are we building the software
right?

Validation

Does the software system meet the
user's real needs?

Are we building the right
SOftwarE? Credit: Philip Koopman

Effective Software Testing: A developer's guide. Maurizio Aniche
Carnegie

Software and Societal =
S3 Mellon

VERIFICATION VALIDATION

Systems Department 5 .
University

Manual testing isn’t the only way to assess
qguality

e Later in this course:
* Dynamic Analysis
« Static Analysis
* Property-based Testing
* Fuzzing

DSftw and Soc tI
Systems Depar tm

	Slide 2: Software Testing
	Slide 3: Learning Goals
	Slide 4: Smoking Section
	Slide 5: Project 2B and 2C
	Slide 6
	Slide 7: Software Quality
	Slide 8
	Slide 9: Testing Focuses on External Quality
	Slide 10: Specification Testing
	Slide 11
	Slide 12: Testing Pyramid
	Slide 13: Program Under Test: Wordle
	Slide 14: Program Under Test: Wordle
	Slide 15: Activity: Write Wordle Examples
	Slide 17: What makes a test good?
	Slide 18: Equivalence Partitioning
	Slide 19: Example: Equivalence Classes?
	Slide 20: Boundary-value analysis
	Slide 21: Boundary-value analysis
	Slide 22: Pairwise testing
	Slide 23: Test Driven Development
	Slide 24: Discussion: How do I design my program so it is testable?
	Slide 25: Design testing principles
	Slide 26: Principles of Testing
	Slide 27: Principles of Testing #1: Avoid the absence of defects fallacy
	Slide 28: What about exhaustive testing?
	Slide 29: What about exhaustive testing?
	Slide 30: Principles of Testing #2: Exhaustive testing is impossible
	Slide 31: Principles of Testing #3: Start testing early
	Slide 32: Principles of Testing #4: Defects are usually clustered
	Slide 33: Principles of Testing #5: The pesticide paradox
	Slide 34: Principles of Testing #6: Testing is context-dependent
	Slide 35: Principles of Testing #7: Verification is not validation
	Slide 36: Manual testing isn’t the only way to assess quality

