
Software Testing
17-313: Foundations of Software Engineering

https://cmu-313.github.io

Michael Hilton and Josh Sunshine
Spring 2026

https://cmu-313.github.io/
https://cmu-313.github.io/
https://cmu-313.github.io/

Learning Goals

• Distinguish between verification and validation

• Articulate the value of testing

• Evaluate trade-offs in the testing pyramid

• Design and refactor code for testability

Smoking Section

•Last full row

Project 2B and 2C

• Project 2B was due yesterday

• Many of you didn’t finish your issue

• That is too be expected, time estimation is hard.

• Project 2C is due February 26.
• We do expect you to finish your issue in this sprint.

• New requirement: write tests (today’s topic)

Software Quality

Internal Quality

• Is the code well structured?

• Is the code understandable?

• How well documented?

External Quality

• Does the software crash?

• Does it meet the requirements?

• Is the UI well designed?

Testing Focuses on
External Quality

Specification Testing

Tests are based on the specification

Advantages:

• Avoids implementation bias

• Robust to changes in the implementation

• Tests don’t require familiarity with the code

• Tests can be developed before the implementation

Testing Pyramid

• Unit Testing: Testing the smallest testable parts (e.g. functions,
objects, modules, or services) in isolation.

• Integration Testing: Verifying that different units work together
correctly.

• System/End-to-End (E2E) Testing: Testing the fully integrated
application from the user’s perspective.

• The Pyramid Trade-off: We want many unit tests (fast, cheap,
specific) and fewer E2E tests (slow, expensive, brittle).

Program Under Test: Wordle

• Guessing game

• User guesses a 5-letter
English word

• After each guess, the tiles
change color to show how
close guesser is to secret
word

Program Under Test: Wordle

• Green: The letter is in the
word and in the correct
spot.

• Yellow: The letter is in the
word but in the wrong
spot.

• Black: The letter is not in
the word in any spot.

Activity: Write Wordle Examples

• Your job is to create unit
tests for the mark_guess
function.

• mark_guess takes two
arguments: guess_word
and secret_word.

• mark_guess returns either
a tuple 5 “colors” (G for
green, Y for Yellow, and B
for Black) or Error

Key rules:

• Green: The letter is in the
word and in the correct
spot.

• Yellow: The letter is in the
word but in the wrong
spot.

• Black: The letter is not in
the word in any spot.

What makes a test good?

Equivalence Partitioning

• Identify sets with same behavior (equivalence class)

• Try one input from each set

• Equivalence classes derived from specifications (e.g.,

cases, input ranges, error conditions, fault models)

• Requires domain-knowledge

Example: Equivalence Classes?

Boundary-value analysis

Key Insight: Errors often occur at the boundaries of a variable
value

• For each variable, select:
• minimum,

• min+1,
• medium,

• max-1,
• maximum;

• possibly also invalid values min-1, max+1

Boundary-value analysis

Variable Domains

age <2, [2,17],
[18,65], >65

ride_datetime weekdays peak
and off-peak,
weekends peak
and off-peak
…

ride_duration <5, >=5

is_public_holiday F, T

Pairwise testing

Key Insight: some problems only occur as the result of

an interaction between parameters/components

• Examples of interactions:
• The bug occurs for senior citizens traveling on weekends (pairwise

interaction)
• The bug occurs for senior citizens traveling on weekends during

peak hours (3-way interaction)
• The bug occurs for adults traveling long trips during public holidays

that are weekends. (4-way interaction)
• Claim: Considering pairwise interactions finds about 50% to

90% of defects

Test Driven Development

Tests first!

Popular agile technique

Write tests as specifications before code

Never write code without a failing test

Claims:

• Design approach toward testable design
• Avoid writing unneeded code
• Higher product quality (e.g. better code,

less defects)
• Higher test suite quality
• Higher overall productivity

Discussion: How do I
design my program so it is
testable?

Design testing principles

• Purity

• Determinism

• Small input and output sets

• Well-definite input and output sets

Principles of Testing

Principles of Testing #1:
Avoid the absence of defects fallacy

• Testing shows the presence of defects

• Testing does not show the absence of defects!

• “no test team can achieve 100% defect detection

effectiveness”

Effective Software Testing: A developer's guide. Maurizio Aniche

What about exhaustive testing?

Idea: Try all values!

• age: int (2 - 117) years
• datetime: DateTime (hh:mm + M/D/Y)
• rideTime: int (in minutes, 1 - 2 Hours)
• is_public_holiday: bool (2 values)

116 x 1440 (minutes per day) x 1826 (days in the next 5 years)
x 120 (ride time) x 2 ~ 72 Billion test cases

What about exhaustive testing?

Exhaustive testing is usually impractical – even for trivially
small problem

Key problem: choosing test suite

• Small enough to finish in a useful amount of time
• Large enough to provide a useful amount of validation

Alternative: Heuristics

Principles of Testing #2:
Exhaustive testing is impossible

● A simple function, 1
input, string, max. 26
lowercase characters
+ symbols (@,.,_,-)

● Assume we can use 1
zettaFLOPS: 1021 tests
per second

All plants
dead

All oceans
dry

All tests done
~8 billion

years

Effective Software Testing: A developer's guide. Maurizio Aniche

Principles of Testing #3:
Start testing early

• To let tests guide design

• To get feedback as early as possible

• To find bugs when they are cheapest to fix

• To find bugs when have caused least damage

Effective Software Testing: A developer's guide. Maurizio Aniche

Principles of Testing #4:
Defects are usually clustered

• “Hot” components requiring frequent change, bad habits,

poor developers, tricky logic, business uncertainty,

innovative, size, …

• Use as heuristic to focus test effort

Effective Software Testing: A developer's guide. Maurizio Aniche

Principles of Testing #5:
The pesticide paradox

“Every method you use to prevent or find bugs leaves a residue of

subtler bugs against which those methods are ineffectual.”

• Re-running the same test suite again and again on a

changing program gives a false sense of security

• Variation in testing

Effective Software Testing: A developer's guide. Maurizio Aniche

Principles of Testing #6:
Testing is context-dependent

Effective Software Testing: A developer's guide. Maurizio Aniche

Principles of Testing #7:
Verification is not validation

Verification

• Does the software system meet the
requirements specifications?

• Are we building the software
right?

Validation

• Does the software system meet the
user's real needs?

• Are we building the right
software? Credit: Philip Koopman

Effective Software Testing: A developer's guide. Maurizio Aniche

Manual testing isn’t the only way to assess
quality

• Later in this course:

• Dynamic Analysis

• Static Analysis

• Property-based Testing

• Fuzzing

	Slide 2: Software Testing
	Slide 3: Learning Goals
	Slide 4: Smoking Section
	Slide 5: Project 2B and 2C
	Slide 6
	Slide 7: Software Quality
	Slide 8
	Slide 9: Testing Focuses on External Quality
	Slide 10: Specification Testing
	Slide 11
	Slide 12: Testing Pyramid
	Slide 13: Program Under Test: Wordle
	Slide 14: Program Under Test: Wordle
	Slide 15: Activity: Write Wordle Examples
	Slide 17: What makes a test good?
	Slide 18: Equivalence Partitioning
	Slide 19: Example: Equivalence Classes?
	Slide 20: Boundary-value analysis
	Slide 21: Boundary-value analysis
	Slide 22: Pairwise testing
	Slide 23: Test Driven Development
	Slide 24: Discussion: How do I design my program so it is testable?
	Slide 25: Design testing principles
	Slide 26: Principles of Testing
	Slide 27: Principles of Testing #1: Avoid the absence of defects fallacy
	Slide 28: What about exhaustive testing?
	Slide 29: What about exhaustive testing?
	Slide 30: Principles of Testing #2: Exhaustive testing is impossible
	Slide 31: Principles of Testing #3: Start testing early
	Slide 32: Principles of Testing #4: Defects are usually clustered
	Slide 33: Principles of Testing #5: The pesticide paradox
	Slide 34: Principles of Testing #6: Testing is context-dependent
	Slide 35: Principles of Testing #7: Verification is not validation
	Slide 36: Manual testing isn’t the only way to assess quality

