
Shifting Left
with Static Analysis

17-313: Foundations of Software Engineering

https://cmu-313.github.io

Michael Hilton and Josh Sunshine

Spring 2026

https://cmu-313.github.io/
https://cmu-313.github.io/
https://cmu-313.github.io/

Smoking Section

• Last full row

3

Course Announcements

• Midterm review session

• Monday, February 23 @ 7pm

• GHC 4401 (Rashid)

• Midterm

• Thursday, February 26

• If you need a disability accommodation, please schedule with ODR
immediately.

• Project 2C due Thursday, February 26 Friday, February 27

Learning Goals

• Understand static vs. dynamic analysis

• Recognize the strengths and limitations of static analysis

• Understand how static analysis is used to shift left and build
systems faster and more confidently

• Explore techniques from linters to deep analyzers

What are Program Analysis Tools?

Static Analysis

Dynamic Analysis

What static analysis can and cannot do
• Type-checking is well established

• set of data types taken by variables at any point

• can be used to prevent type errors (e.g., Java) or warn about potential type errors (e.g., Python)

• Checking for problematic patterns in syntax is easy and fast

• is there a comparison of two Java strings using `==`?

• is there an array access `a[i]` without an enclosing bounds check for `i`?

• Reasoning about termination is impossible in general (halting problem)

• Reasoning about exact values is hard, but conservative analysis via abstraction is possible
• is the bounds check before `a[i]` guaranteeing that `i` is within bounds?

• can the divisor ever take on a zero value? be prepared for “MAYBE”

• Verifying advanced properties is possible but expensive
• CI-based static analysis usually over-approximates conservatively

The Bad News: Rice’s Theorem
Every static analysis is necessarily
incomplete, unsound, undecidable, or a
combination thereof

“Any nontrivial property about the language
recognized by a Turing machine is undecidable.”

Henry Gordon Rice, 1953

Static Analysis is well suited to detecting
certain kinds of defect

• Security: Buffer overruns, improperly validated input …

• Memory safety: Null dereference, uninitialized data …

• Resource leaks: Memory, OS resources …

• These often rely on specific conditions and take place over long
horizons (e.g., leaks). Difficult to find using traditional testing!

Dynamic analysis reasons about executions

• Tells you properties of the program that were definitely observed

• Code coverage

• Performance profiling

• Type profiling

• Testing

• In practice, implemented by program instrumentation
• Think “Automated logging”

• Slows down execution speed by a small amount

Static analysis has many applications

• Find bugs

• Refactor code

• Keep your code stylish!

• Identify code smells

• Measure quality

• Find usability and accessibility issues

• Identify bottlenecks and improve performance

Static Analysis vs. Dynamic Analysis

• Requires only source code

• Conservatively reasons about all possible
inputs and program paths

• Reported warnings may contain false
positives

• Can report all warnings of a particular class
of problems

• Advanced techniques like formal verification
can prove certain complex properties, but
rarely run in CI due to cost

• Requires successful build + test inputs

• Observes individual executions

• Reported problems are real, as observed by
a witness input

• Can only report problems that are seen.
Highly dependent on test inputs. Subject to
false negatives

• Advanced techniques like symbolic
execution can prove certain complex
properties, but rarely run in CI due to cost

Activity: Analyze the Python program dynamically

1. What is the type of variable `u` during

program execution?

2. Did the variable `u` ever contain a

negative number?

3. For how many iterations did the while

loop execute?

4. Was there ever be a division by zero?

5. Did the returned value ever contain a

minus sign ‘-’?

def n2s(n: int, b: int):

 if n <= 0: return '0'

 r = ''

 while n > 0:

 u = n % b

 if u >= 10:

 u = chr(ord('A') + u-10)

 n = n // b

 r = str(u) + r

 return r

print(n2s(12, 10))

Activity: Analyze the Python program statically

1. What is the type of variable `u`?

2. Will the variable `u` be a negative number?

3. Will this function always return a value?

4. Will the program divide by zero?

5. Will the returned value ever contain a

minus sign ‘-’?

def n2s(n: int, b: int):

 if n <= 0: return '0'

 r = ''

 while n > 0:

 u = n % b

 if u >= 10:

 u = chr(ord('A') + u-10)

 n = n // b

 r = str(u) + r

 return r

Static Analysis

Static Analysis is Key to Shifting Left

• Issues are cheaper and faster to rectify when discovered early

•→ Find and prevent issues as early as possible

Static Analysis is a key part of Continuous
Integration

Reflecting on NodeBB

• Did your team accidentally merge breaking changes?
• e.g., missing semi-colons, incorrect variable names, …

• How did it sneak past review?
• you probably weren’t expecting to look for small mistakes!

• you didn’t get much support from the CI setup

• you might have been distracted by the flaky tests!

Static analysis is integrated in your IDE

Static analysis used to be an academic
amusement. Now it’s heavily commercialized.

There are lots of static analysis tools!

What makes a good static analysis tool?

• Static analysis should be fast
• Don’t hold up development velocity

• This becomes more important as code scales

• Static analysis should report few false positives
• Or developers will start to ignore warnings and alerts, and quality will decline

• Static analysis should be continuous
• Should be part of your continuous integration pipeline

• Even better: don’t analyze the whole codebase; just the changes

• Static analysis should be informative
• Messages that help the developer to quickly locate and address the issue

• Ideally, it should suggest or automatically apply fixes

https://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext

Static Analysis: Broad Classification
• Formatting Linters

• Shallow syntax analysis for enforcing code styles and formatting

• Pattern-Based Linters (“bug detectors”)
• Simple syntax or API-based rules for identifying common programming mistakes or

violations of best practice

• Type-Based Analysis
• Check conformance to user-defined types

• Types can be complex (e.g., “Nullable”)

• Data-Flow Analysis / Abstract Interpretation (Value Analysis)
• Deep program analysis to find complex error conditions

• e.g., ”can array index be out of bounds?”

Today

• Formatting Linters

• Pattern-Based Linters

• Type-Based Analysis

• Value Analysis (Data Flow & Abstract Interpretation)

• Analysis for Everything Else

Today

• Formatting Linters

• Pattern-Based Linters

• Type-Based Analysis

• Value Analysis (Data Flow & Abstract Interpretation)

• Analysis for Everything Else

Linters: Cheap, fast, and lightweight static
source analysis

https://www.perforce.com/blog/qac/what-lint-code-and-why-linting-important

 Formatting Linters use shallow static
analysis to enforce formatting rules

• Ensure proper indentation

• Naming convention

• Line sizes

• Class nesting

• Documenting public functions

• Parenthesis around expressions

• What else?

Style guidelines help to facilitate communication

https://www.chicagomanualofstyle.org/ | https://google.github.io/styleguide/ | https://www.python.org/dev/peps/pep-0008 | https://github.com/airbnb/javascript

Guidelines are inherently opinionated, but consistency is the important point.

Agree to a set of conventions and stick to them.

https://www.chicagomanualofstyle.org/
https://google.github.io/styleguide/
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008

Use linters to enforce style guidelines

Don’t rely on manual inspection during code review! Even better,
automatically apply the tool on save or commit.

https://checkstyle.sourceforge.io/

Use linters to improve maintainability

• Why? We spend more time reading code than writing it
• Various estimates of the exact %, some as high as 80%

• Code is ownership is usually shared

• The original owner of some code may move on

• Code conventions make it easier for other developers to quickly
understand your code

Today

• Formatting Linters

• Pattern-Based Linters

• Type-Based Analysis

• Value Analysis (Data Flow & Abstract Interpretation)

• Analysis for Everything Else

Pattern-Based Analysis evaluates
program syntax against a set of rules

• Matches syntactic patterns (via abstract syntax tree) to identify
likely mistakes and API misuses

• Good at finding use of disallowed and deprecated APIs, dangerous
language features, and obvious mistakes

• Provides fast, best effort bug finding when used appropriately
• Can only find issues for which there is a corresponding rule / pattern

• Some issues may incorrectly trigger in benign cases (false positives)

• Saves time during code review by checking for common mistakes

Pattern-Based Analysis for JS/TS

• De facto standard for pattern-based checks in JavaScript and
TypeScript. Integrates with editors (e.g., VS Code) out of the box

• “npm run lint” usually involves ESLint

• Provides rules that check for mistakes and enforce best practices
• Correctness Rules (“Possible Problems”) look for logic errors

• Suggestion Rules enforce best practices and clean code

• Automatically fixes the code for certain rule violations (--fix)
• by applying a deterministic, syntactic rewrite rule (no LLMs!)

https://eslint.org/docs/latest/rules/

What’s the problem in this code?

setTimeout("doThing()", 100);
setInterval("x = x + 1", 1000);
setInterval(callbackStr, 500);
const f = new Function("a", "b", "return a + b");

Correctness Rule: no-implied-eval

• Identifies implicit evaluation of strings as code
• equivalent to eval — a major security and reliability risk!

• stringified code escapes static analysis; may crash or cause problems

• user-provided strings open up the potential for remote code execution

https://eslint.org/docs/latest/rules/no-implied-eval

// Bad: string evaluated as code
setTimeout("doThing()", 100);
setInterval("x = x + 1", 1000);
const f = new Function("a", "b", "return a + b");

// Good: pass functions/closures
setTimeout(() => doThing(), 100);
setInterval(() => { x = x + 1; }, 1000);
function add(a, b) { return a + b; }

https://eslint.org/docs/latest/rules/no-implied-eval
https://eslint.org/docs/latest/rules/no-implied-eval
https://eslint.org/docs/latest/rules/no-implied-eval
https://eslint.org/docs/latest/rules/no-implied-eval
https://eslint.org/docs/latest/rules/no-implied-eval

Suggested Rule: (no) “Yoda”

• Yoda condition flip operands
• Pro Yoda: it’s impossible to accidentally use “=“

• Anti Yoda: it makes the code harder to read

https://eslint.org/docs/latest/rules/yoda

// Yoda style
if (“red” === color) { /* ... */ }

// Preferred
if (color === “red”) { /* ... */ }

ESLint can be extended with plugins

• To find more code quality issues
• depend, SonarJS, Unicorn, …

• To scan different languages
• SQL, HTML, JSON, YAML, …

• To identify issues with frameworks

• React, Angular, Vue, …

• To identify issues with libraries
• JSDoc, jQuery, RequireJS, …

https://github.com/dustinspecker/awesome-eslint

https://github.com/es-tooling/eslint-plugin-depend
https://github.com/es-tooling/eslint-plugin-depend
https://github.com/SonarSource/SonarJS/blob/master/packages/jsts/src/rules/README.md
https://github.com/SonarSource/SonarJS/blob/master/packages/jsts/src/rules/README.md
https://github.com/gajus/eslint-plugin-sql
https://github.com/gajus/eslint-plugin-sql
https://github.com/yeonjuan/html-eslint
https://github.com/azeemba/eslint-plugin-json
https://github.com/ota-meshi/eslint-plugin-yml
https://github.com/jsx-eslint/eslint-plugin-react
https://github.com/jsx-eslint/eslint-plugin-react
https://github.com/angular-eslint/angular-eslint
https://github.com/vuejs/eslint-plugin-vue
https://github.com/gajus/eslint-plugin-jsdoc
https://github.com/gajus/eslint-plugin-jsdoc
https://github.com/wikimedia/eslint-plugin-no-jquery
https://github.com/cvisco/eslint-plugin-requirejs
https://github.com/dustinspecker/awesome-eslint
https://github.com/dustinspecker/awesome-eslint
https://github.com/dustinspecker/awesome-eslint

Challenges with pattern-based analysis

• The analysis must produce few or (better yet) zero false positives

• Otherwise, developers won’t be able to build the code!

• The analysis needs to be really fast

• Ideally < 100 ms

• If it takes longer, developers will become irritated and lose productivity

• Practically, this means the analysis needs to focus on “shallow” bugs rather than verifying
some complex logic spanning multiple functions/classes

• You can’t just “turn on” a particular check

• Every instance where that check fails will prevent existing code from building

• There could be thousands of violations for a single check across large codebases

Today

• Formatting Linters

• Pattern-Based Linters

• Type-Based Analysis

• Value Analysis (Data Flow & Abstract Interpretation)

• Analysis for Everything Else

// $./prog 5 helloWorld

// hello

int main(int c, char **v) { // prints first N characters of string

 if (c < 3) return 1;

 int n = atoi(v[1]);

 char buf[8];

 if (n < sizeof buf) {

 memcpy(buf, v[2], n);

 }

 buf[n] = '\0';

 puts(buf);

}

Can you spot the bug?

// $./prog 5 helloWorld

// hello

int main(int c, char **v) { // prints first N characters of string

 if (c < 3) return 1;

 int n = atoi(v[1]);

 char buf[8];

 if (n < sizeof buf) { // negative values are allowed

 memcpy(buf, v[2], n); // n is promoted to size_t; becomes huge number!

 }

 buf[n] = '\0';

 puts(buf);

}

Can you spot the bug?

// $./prog 5 helloWorld

// hello

int main(int c, char **v) { // prints first N characters of string

 if (c < 3) return 1;

 int n = atoi(v[1]);

 char buf[8];

 if (n < sizeof buf) {

 memcpy(buf, v[2], n);

 }

 buf[n] = '\0'; // undefined behavior for n < 0!

 puts(buf);

}

Can you spot the bug?

 Languages as the first line of defense

• Idea: Prevent entire classes of bugs before runtime!

• bad programs won’t compile or fail checks; errors surface in editor / CI

• provides strong guarantees about absence of certain bugs

• Languages provide memory safety in different ways

• Compile time (no GC): Rust. Language features (ownership, borrowing,
lifetimes) prevent memory errors in safe code

• Managed runtimes: E.g., JavaScript, Java, C#, Go. Relies on array bounds
+ garbage collection. Doesn’t allow pointer arithmetic

• C++ with discipline: RAII & smart pointers help to reduce leaks and
eliminate use-after-free, but they are not memory safe

Can you spot the issue?

https://www.typescriptlang.org

https://www.typescriptlang.org/
https://www.typescriptlang.org/

Memory-safe doesn’t imply type safety

 Cannot find name ‘orr’.

https://www.typescriptlang.org

https://www.typescriptlang.org/
https://www.typescriptlang.org/

Memory-safe doesn’t imply type safety

• Javascript is dynamically and
loosely typed language

• Types are determined at runtime
• the same variable may hold values with

different types over time

• Type errors only show up when
you run the code
• uses aggressive type coercion to convert

values for compatibility

TypeScript: JavaScript with Types

• TypeScript is a strongly typed language
• errors are caught before run-time!

• TypeScript is converted (“transpiled”) to JavaScript

Add Types to Existing Code via Annotations

• Add type annotations on top of the existing language
• allows you mix and match typed and untyped code -- easier to transition

Enrich Type Systems via Annotations

• We don’t need to be bound to just structural types!

• We can use annotations to layer additional semantics on top of
the base type system

• E.g., Java Checker framework provides annotations that help to target null
pointer errors, uninitialized fields, information leaks, SQL injections,
incorrect physical units, bad format strings, …

• Can guarantee the absence of certain defect classes
• provided that code is annotated correctly

Example: Detecting null pointer exceptions

• @Nullable indicates that an
expression may be null

• @NonNull indicates that an
expression must never be null

• Guarantees that expressions
annotated with @NonNull will
never evaluate to null. Forbids
other expressions from being
dereferenced

// return value
@NonNull String toString() { ... }

// parameter
int compareTo(@NonNull String other)
{ ... }

https://checkerframework.org/manual/#nullness-annotations

import org.checkerframework.checker.nullness.qual.*;

public class NullnessExampleWithWarnings {

 public void example() {

 @NonNull String foo = "foo";

 String bar = null;

 foo = bar;

 println(foo.length());

 }

}

@Nullable is applied by
default

Error: [assignment.type.incompatible] incompatible types in assignment.
found : @Initialized @Nullable String
required: @UnknownInitialization @NonNull String

import org.checkerframework.checker.nullness.qual.*;

public class NullnessExampleWithWarnings {

 public void example() {

 @NonNull String foo = "foo";

 String bar = null; // @Nullable

 if (bar != null) {

 foo = bar;

 }

 println(foo.length());

 }

}

bar is refined to
@NonNull

Another example: Units Checker

• Guarantees operations are physically meaningful and use same
kind and units

• Kind annotations
• @Acceleration, @Angle, @Area, @Current, @Length, @Luminance, @Mass,

@Speed, @Substance, @Temperature, @Time

• SI unit annotation
• @m, @km, @mm, @kg, @mPERs, @mPERs2, @radians,

@degrees, @A, ...

https://www.nist.gov/pml/weights-and-measures/metric-si/si-units

https://www.simscale.com/blog/2017/12/nasa-mars-climate-orbiter-metric

NASA’s Mars Climate Orbiter (cost of $327 million) was lost because of a discrepancy
between use of metric unit Newtons and imperial measure Pound-force.

import static org.checkerframework.checker.units.UnitsTools.m;
import static org.checkerframework.checker.units.UnitsTools.mPERs;
import static org.checkerframework.checker.units.UnitsTools.s;

void demo() {
@m int x;
x = 5 * m;

@m int meters = 5 * m;
@s int seconds = 2 * s;

@mPERs int speed = meters / seconds;
@m int foo = meters + seconds;
@s int bar = seconds - meters;

import static org.checkerframework.checker.units.UnitsTools.m;
import static org.checkerframework.checker.units.UnitsTools.mPERs;
import static org.checkerframework.checker.units.UnitsTools.s;

void demo() {
@m int x;
x = 5 * m;

@m int meters = 5 * m;
@s int seconds = 2 * s;

@mPERs int speed = meters / seconds;
@m int foo = meters + seconds;
@s int bar = seconds - meters;

@m indicates that x represents meters

To assign a unit, multiply appropriate
unit constant from UnitTools

Does this program compile?

import static org.checkerframework.checker.units.UnitsTools.m;
import static org.checkerframework.checker.units.UnitsTools.mPERs;
import static org.checkerframework.checker.units.UnitsTools.s;

void demo() {
@m int x;
x = 5 * m;

@m int meters = 5 * m;
@s int seconds = 2 * s;

@mPERs int speed = meters / seconds;
@m int foo = meters + seconds;
@s int bar = seconds - meters;

@m indicates that x represents meters

To assign a unit, multiply appropriate
unit constant from UnitTools

Does this program compile? No.

import static org.checkerframework.checker.units.UnitsTools.m;
import static org.checkerframework.checker.units.UnitsTools.mPERs;
import static org.checkerframework.checker.units.UnitsTools.s;

void demo() {
@m int x;
x = 5 * m;

@m int meters = 5 * m;
@s int seconds = 2 * s;

@mPERs int speed = meters / seconds;
@m int foo = meters + seconds;
@s int bar = seconds - meters;

Addition and subtraction between
meters and seconds is physically
meaningless

Limitations of Type-Based Static Analysis

• Can only analyze code that is annotated
• Requires that dependent libraries are also annotated

• Can be tricky to retrofit annotations into existing codebases

• Only considers the signature and annotations of methods
• Doesn’t look at the implementation of methods that are being called

• Can’t handle dynamically generated code well

• Examples: Spring Framework, Templates

• Can produce false positives!
• Byproduct of necessary approximations

Today

• Formatting Linters

• Pattern-Based Linters

• Type-Based Analysis

• Value Analysis (Data Flow & Abstract Interpretation)

• Analysis for Everything Else

Dataflow and Taint Analysis

• Tracks how values move through a program (assignments,
branches, function calls)

• Can data from an untrusted source reach a sink along a feasible path?

• Check if tainted data is sanitized before reaching sink

• Useful for finding security issues
• command and SQL injection; cross-site scripting; unsafe deserialization; …

• requires models of frameworks, libraries, and sanitizers; if these models
are missing, results will contain false positives/negatives

• struggles with aliasing and dynamic features (e.g., eval, reflection)

https://codeql.github.com

Abstract Interpretation / Value Analysis

• Computes a sound over-approximations of
program behavior in terms of an abstract domain
• Goal: determine if a property holds for all executions

• e.g., “y/x” is “x” ever 0?

• abstract domain captures only the values/states
relevant to our property of interest

• e.g., “is zero?”

• Mostly restricted to embedded, safety critical code
• not suited to dynamic and reflective languages

• difficult to scale — explores all possible paths!

Today

• Formatting Linters

• Pattern-Based Linters

• Type-Based Analysis

• Value Analysis (Data Flow & Abstract Interpretation)

• Analysis for Everything Else

Static Analysis for Everything Else

• Static analysis isn’t just for source code
• If it’s machine readable, we can statically analyze it!

Dependencies & Supply Chain

• Analysis can find dependencies with known vulnerabilities
(including transitive deps), malicious packages (e.g., typosquats),
and incompatible licenses by scanning manifests and images

https://github.com/security/advanced-security/software-supply-chain

https://github.com/security/advanced-security/software-supply-chain
https://github.com/security/advanced-security/software-supply-chain
https://github.com/security/advanced-security/software-supply-chain
https://github.com/security/advanced-security/software-supply-chain
https://github.com/security/advanced-security/software-supply-chain
https://github.com/security/advanced-security/software-supply-chain
https://github.com/security/advanced-security/software-supply-chain
https://github.com/security/advanced-security/software-supply-chain
https://github.com/security/advanced-security/software-supply-chain

https://www.stepsecurity.io/blog/ctrl-tinycolor-and-40-npm-packages-compromised

https://www.stepsecurity.io/blog/ctrl-tinycolor-and-40-npm-packages-compromised
https://www.stepsecurity.io/blog/ctrl-tinycolor-and-40-npm-packages-compromised
https://www.stepsecurity.io/blog/ctrl-tinycolor-and-40-npm-packages-compromised
https://www.stepsecurity.io/blog/ctrl-tinycolor-and-40-npm-packages-compromised
https://www.stepsecurity.io/blog/ctrl-tinycolor-and-40-npm-packages-compromised
https://www.stepsecurity.io/blog/ctrl-tinycolor-and-40-npm-packages-compromised
https://www.stepsecurity.io/blog/ctrl-tinycolor-and-40-npm-packages-compromised
https://www.stepsecurity.io/blog/ctrl-tinycolor-and-40-npm-packages-compromised
https://www.stepsecurity.io/blog/ctrl-tinycolor-and-40-npm-packages-compromised
https://www.stepsecurity.io/blog/ctrl-tinycolor-and-40-npm-packages-compromised
https://www.stepsecurity.io/blog/ctrl-tinycolor-and-40-npm-packages-compromised
https://www.stepsecurity.io/blog/ctrl-tinycolor-and-40-npm-packages-compromised
https://www.stepsecurity.io/blog/ctrl-tinycolor-and-40-npm-packages-compromised
https://www.stepsecurity.io/blog/ctrl-tinycolor-and-40-npm-packages-compromised
https://www.stepsecurity.io/blog/ctrl-tinycolor-and-40-npm-packages-compromised

https://www.aikido.dev/blog/npm-debug-and-chalk-packages-compromised

https://www.aikido.dev/blog/npm-debug-and-chalk-packages-compromised
https://www.aikido.dev/blog/npm-debug-and-chalk-packages-compromised
https://www.aikido.dev/blog/npm-debug-and-chalk-packages-compromised
https://www.aikido.dev/blog/npm-debug-and-chalk-packages-compromised
https://www.aikido.dev/blog/npm-debug-and-chalk-packages-compromised
https://www.aikido.dev/blog/npm-debug-and-chalk-packages-compromised
https://www.aikido.dev/blog/npm-debug-and-chalk-packages-compromised
https://www.aikido.dev/blog/npm-debug-and-chalk-packages-compromised
https://www.aikido.dev/blog/npm-debug-and-chalk-packages-compromised
https://www.aikido.dev/blog/npm-debug-and-chalk-packages-compromised
https://www.aikido.dev/blog/npm-debug-and-chalk-packages-compromised
https://www.aikido.dev/blog/npm-debug-and-chalk-packages-compromised
https://www.aikido.dev/blog/npm-debug-and-chalk-packages-compromised
https://www.aikido.dev/blog/npm-debug-and-chalk-packages-compromised

Config, CI, and Infrastructure-as-Code

• We can find issues in config files (e.g., JSON, YAML, TOML)
• find formatting problems (e.g., bad indentation, missing close bracket)

• find schema issues (e.g., required fields, bad values)

• We can check our CI setup / workflows (e.g., GitHub Actions)
• unpinned actions; forbidden env vars; unsafe permissions

• We can also check infrastructure-as-code (e.g., Docker, k8s)

• Docker: “latest” tags, root user, CVEs in images, reproducibility hints

Remember Crowdstrike?

• Issue was a bad update to a config file

• Could have it been caught before push?

Key Takeaways

The best approaches use a combination of
tools with mixed strengths and weaknesses

https://software-lab.org/publications/ase2018_static_bug_detectors_study.pdf

How is this different to using AI tools?

• Static analysis is driven by a set of deterministic rules
• we can confidently apply them and obtain stronger assurances

• LLMs are probabilistic
• we can’t repeat results; some results will be catastrophically incorrect

• but, LLMs are potentially richer and more expressive

• patterns are implicitly captured in the latent space

• It makes sense to use both in different contexts

• CI: static analysis!

• PRs: AI-provided suggestions and draft changes

Which tool to use?

• Depends on use case and available resources

• Formatters: Fast, cheap, easy to address issues or set ignore rules

• Pattern-based linters: Intuitive, but need to deal with false positives

• Type-annotation-based checkers: More manual effort required; needs
overall project commitment. But good payoff once adopted

• Deep analysis tools: Can find tricky issues, but can be costly. Might need
some awareness of the analysis to deal with false positives

• The best QA strategy involves multiple analysis, testing, and
inspection techniques!

Course Announcements

• Midterm review session

• Monday, February 23

• GHC 4401 (Rashid)

• Midterm

• Thursday, February 26

• If you need a disability accommodation, please schedule with ODR
immediately.

• Project 2C due Thursday, February 26 Friday, February 27

	Opening
	Slide 2: Shifting Left with Static Analysis
	Slide 3: Smoking Section
	Slide 4: Course Announcements
	Slide 5: Learning Goals
	Slide 6: What are Program Analysis Tools?
	Slide 7: What static analysis can and cannot do
	Slide 8: The Bad News: Rice’s Theorem Every static analysis is necessarily incomplete, unsound, undecidable, or a combination thereof
	Slide 9: Static Analysis is well suited to detecting certain kinds of defect
	Slide 10: Dynamic analysis reasons about executions
	Slide 11: Static analysis has many applications
	Slide 12: Static Analysis vs. Dynamic Analysis
	Slide 13: Activity: Analyze the Python program dynamically
	Slide 14: Activity: Analyze the Python program statically

	An Outline of Static Analysis
	Slide 15: Static Analysis
	Slide 16: Static Analysis is Key to Shifting Left
	Slide 17: Static Analysis is a key part of Continuous Integration
	Slide 18: Reflecting on NodeBB
	Slide 19: Static analysis is integrated in your IDE
	Slide 20: Static analysis used to be an academic amusement. Now it’s heavily commercialized.
	Slide 21: There are lots of static analysis tools!
	Slide 22: What makes a good static analysis tool?
	Slide 23: Static Analysis: Broad Classification
	Slide 24: Today

	Formatters
	Slide 25: Today
	Slide 26: Linters: Cheap, fast, and lightweight static source analysis
	Slide 27: 📏 Formatting Linters use shallow static analysis to enforce formatting rules
	Slide 28: Style guidelines help to facilitate communication
	Slide 29: Use linters to enforce style guidelines
	Slide 30: Use linters to improve maintainability

	Pattern-Based Analysis
	Slide 31: Today
	Slide 32: Pattern-Based Analysis evaluates program syntax against a set of rules
	Slide 33: Pattern-Based Analysis for JS/TS
	Slide 34: What’s the problem in this code?
	Slide 35: Correctness Rule: no-implied-eval
	Slide 36: Suggested Rule: (no) “Yoda”
	Slide 37: ESLint can be extended with plugins
	Slide 38: Challenges with pattern-based analysis

	Type-Based Analysis
	Slide 39: Today
	Slide 40: Can you spot the bug?
	Slide 41: Can you spot the bug?
	Slide 42: Can you spot the bug?
	Slide 43
	Slide 44: 🛡️ Languages as the first line of defense
	Slide 45: Can you spot the issue?
	Slide 46: Memory-safe doesn’t imply type safety
	Slide 47: Memory-safe doesn’t imply type safety
	Slide 48: TypeScript: JavaScript with Types
	Slide 49: Add Types to Existing Code via Annotations
	Slide 50: Enrich Type Systems via Annotations
	Slide 51: Example: Detecting null pointer exceptions
	Slide 52
	Slide 53
	Slide 54: Another example: Units Checker
	Slide 55
	Slide 56
	Slide 57
	Slide 58: Does this program compile?
	Slide 59: Does this program compile? No.
	Slide 61: Limitations of Type-Based Static Analysis

	Deep Analysis
	Slide 62: Today
	Slide 63: Dataflow and Taint Analysis
	Slide 64: Abstract Interpretation / Value Analysis

	Analysis for things other than source code!
	Slide 65: Today
	Slide 66: Static Analysis for Everything Else
	Slide 67: Dependencies & Supply Chain
	Slide 68
	Slide 69
	Slide 71: Config, CI, and Infrastructure-as-Code
	Slide 72: Remember Crowdstrike?

	Closing
	Slide 73: Key Takeaways
	Slide 74: The best approaches use a combination of tools with mixed strengths and weaknesses
	Slide 75: How is this different to using AI tools?
	Slide 76: Which tool to use?
	Slide 77: Course Announcements

