Shifting Left
with Static Analysis

17-313: Foundations of Software Engineering
https://cmu-313.github.io

Michael Hilton and Josh Sunshine
Spring 2026

Software and Soc t | Carnegie
S3AD oo oevartme Mellon

University

https://cmu-313.github.io/
https://cmu-313.github.io/
https://cmu-313.github.io/

Smoking Section

. Last full row

DESIGNATED
SMOKING
AREA

Course Announcements

 Midterm review session
« Monday, February 23 @ 7pm
« GHC 4401 (Rashid)

« Midterm
* Thursday, February 26

* If you need a disability accommodation, please schedule with ODR
immediately.

 Project 2C due FhrursdayFebruary-26 Friday, February 27

Carnegie

D Software and Societal
Systems Department Mellon

University

Learning Goals

» Understand static vs. dynamic analysis
« Recognize the strengths and limitations of static analysis

« Understand how static analysis is used to shift left and build
systems faster and more confidently

 Explore techniques from linters to deep analyzers

D Software and Societal Carnegie
Systems Department Mellon

University

What are Program Analysis Tools?

src/controllers/accounts/posts.js [}

Show 135 more lines

136 .. 1,
137 .. 3,
138 .. 3;
k 139
140 .. postsController.getBookmarks = async function (reg, res, next) {
141 . awailt getPostsFromUserSet('account/bookmarks', req, res, © next);

Static Analysis

This function expects 3 arguments, but 4 were provided.

142 . b
143
144 . postsController.getPosts = async function (req, res, next) {
145 . L] await getPostsFromUserSet('account/posts', reg, res, next);
146 .. };
v
COVERALLS 66 Auth.reloadRoutes = async fanction (parsms) ¢
7 loginStrategies. length = 0
L 68 const { router } = parans;
2]
* 7
* 7 if (p1 hooks. hastisteners(" ridelogin')) {
n winston.warn{‘ (authentication] Login override detected, skipping L
) Vogln strategy.*)s
L 74) else
o D H H) 75 passport.use (new passportLocal({ passReqToCallback: true },
> ynamic Analysis
76 }
7
78
7 passport.use('core.api’, new BearerStrategy({}, Auth.verifyToken));
80
81
82 try {
83 loginstrategies = await plugins.hooks. fire(’filter:auth. init’,
loginstrategies);
84 } cateh (err) {
85 winston.error(’ lauthentication] ${err.stack}');
86 ¥
87 loginStrategies = loginstrategies || [1;
88 loginStrategies. forEach((strategy) = {

“ -
83 Software and Societal Car negie

Systems Department 1\"[6‘!]01’1
Univers

What static analysis can and cannot do

Type-checking is well established
 set of data types taken by variables at any point
« can be used to prevent type errors (e.g., Java) or warn about potential type errors (e.g., Python)

Checking for problematic patterns in syntax is easy and fast
* isthere a comparison of two Java strings using =="?
« isthere an array access "ali]” without an enclosing bounds check for "i"?

Reasoning about termination is impossible in general (halting problem)

Reasoning about exact values is hard, but conservative analysis via abstraction is possible
 isthe bounds check before "ali]” guaranteeing that "i" is within bounds?
« can the divisor ever take on a zero value? be prepared for “MAYBE"

Verifying advanced properties is possible but expensive
« Cl-based static analysis usually over-approximates conservatively

D Software and Societal Carnegie
Systems Department Mellon

University

The Bad News: Rice’s Theorem

Every static analysis is necessarily
incomplete, unsound, undecidable, or a
combination thereof

“Any nontrivial property about the language
recognized by a Turing machine is undecidable.”

Henry Gordon Rice, 1953

Carnegie

SsD 2yf?/vm De S i t l Mellon

University

Static Analysis is well suited to detecting
certain kinds of defect

 Security: Buffer overruns, improperly validated input ...
- Memory safety: Null dereference, uninitialized data ...
* Resource leaks: Memory, OS resources ...

* These often rely on specific conditions and take place over long
horizons (e.g., leaks). Difficult to find using traditional testing!

Carnegie

Software and Soc t |
330 Systems e epar artme Mellon

University

Dynamic analysis reasons about executions

» Tells you properties of the program that were definitely observed

« Code coverage

« Performance profiling
« Type profiling

« Testing

* In practice, implemented by program instrumentation

« Think “Automated logging”
« Slows down execution speed by a small amount

Carnegie

D Software and Societal
Systems Department Me!lon :
University

Static analysis has many applications

* Find bugs

 Refactor code

« Keep your code stylish!
» |[dentify code smells

« Measure quality
» Find usability and accessibility issues

* [dentify bottlenecks and improve performance

Software and Soc t | Carnegie
330 Systems e epar artme Mellon

University

Static Analysis vs. Dynamic Analysis

» Requires only source code » Requires successful build + test inputs

« Conservatively reasons about all possible » Observes individual executions

inputs and program paths
» Reported problems are real, as observed by

« Reported warnings may contain false a witness input
positives
« Can only report problems that are seen.
« Canreport all warnings of a particular class Highly dependent on test inputs. Subject to
of problems false negatives

« Advanced techniques like formal verification + Advanced techniques like symbolic
can prove certain complex properties, but execution can prove certain complex
rarely run in Cl due to cost properties, but rarely run in Cl due to cost

Carnegie

D Software and Societal 8
Systems Department Mellon

University

Activity: Analyze the Python program dynamically

def n2s(n: int, b: int): : : NN :
() 1. What s the type of variable 'u during

if n <= 0: return '0’ _
program execution?

r =

while n > 0: ». Did the variable 'u ever contain a
u=n%b negative number?
if u>=10:

3. For how many iterations did the while

u = chr(ord('A’) + u-10) loop execute?

n=n//b L
s. Was there ever be a division by zero?
r=str(u) +r
return r 5. Did the returned value ever contain a

minus sign ‘-’?

print(n2s(12, 10))

D Software and Societal
Systems Department

Carnegie

Mellon

University

Activity: Analyze the Python program statically

def n2s(n: int, b: int): . _ o
1. What is the type of variable u™?

if n <= 0: return '0'

o 2. Will the variable "u’ be a negative number?
while n > 0: 3. Will this function always return a value?
u=n%b

if u>=10:

4. Will the program divide by zero?

u = chr{ord(‘A’) + u-10) 5. Will the returned value ever contain a

- . ‘(79
n=n//b minus sign -

r=str(u) +r

returnr

D Software and Societal Carnegie
Systems Department Mellon

University

Static Analysis

D Software and Societal Carnegie
Systems Department Mellon

University

Static Analysis is Key to Shifting Left

* [ssues are cheaper and faster to rectify when discovered early
- = Find and prevent issues as early as possible

Attention
to

Quality Smft cli.e{t Tr%%igﬁtr;cl
ode

Model

Plan Develop Test Deploy Monitor
& Design & Build & Release & Analyze

| .
Software and Societal (@1 negie
Systems Department Mellon

University

Static Analysis is a key part of Continuous
Integration

© B @

REVIEW STAGING PRODUCTION

X [o QQ

COMMIT

</>
<

o ®O—0— 000 o ([o
| BUILD UNIT |NTEGRATION

TESTS TESTS
® CD PIPELINE

CI PIPELINE

RELATED CODE

Al .
Software and Societal (@1 negie
Systems Department Mellon

University

Reflecting on NodeBB

 Did your team accidentally merge breaking changes?
 e.g2., missing semi-colons, incorrect variable names, ...

« How did it sneak past review?
* you probably weren't expecting to look for small mistakes!
 you didn't get much support from the Cl setup
« you might have been distracted by the flaky tests!

emailer.send] Error: [[error:sendmail-not-found]]
at Emailer.sendToEmail (/home/runner/work/NodeBB.ai/NodeBB.ai/src/emailer.js:17:2620)
at process.processTicksAndRejections (node:internal/process/task_queues:105:5)
at async Emailer.send (/home/runner/work/NodeBB.ai/NodeBB.ai/src/emailer.js:16:197)
at async UserEmail.sendValidationEmail

D Software and Societal Carnegie
Systems Department . .

Static analysis is integrated in your IDE

EXTENSIONS: MARKETPLACE ooo 2., cppcoreguidelines.cpp

// To enable only C++ Core Guidelines checks
// go to Settings/Preferences | Editor | Inspections | C/C++ | Clang-Tidy

H // and provide: —x,cppcoreguidelines—* in options

lint = Y :
void fill_pointer(intx arr, const int num) {

for(i.ﬂt i=0; i<num ++i) {
- arrli] = 0;
i O 21ms 2
ESLInt =~ Do not use pointer arithmetic

ES} Integrates ESLint JavaScript into VS... o L
Lint vo:.d_ful_array(mt ind) {
%} int arr(3] = {1,2,3};

arr[ind] = 0; HHE

bilities: 6 high | 10 medium | 4 low H Cross-site Scripting (XSS)

5 high | 8 medium ty

5 % Microsoft

void cast_away_const(const int& magic_num)

C/C++ Advanced Lint » 674K % 3
Lint; Anadvanced, modern, static analysi...

Joseph Benden Install

const_cast<int&>(magic_num) = 42;

Carnegie

D Software and Societal
Systems Department Mellon

Universi

Static analysis used to be an academic
amusement. Now it's heavily commercialized.

e — g))) Sonar Products v Why Sonar v~ Pricing Developers ~ Resources ~ Company ~ News
—— Snyk Secures $150M, Snags $1B
' g e— e Valuation

Security

oo) Sydney Sawaya | Assoclate Editor Shacs thin aciicle:
306 results | y Awes | x
categories January 21, 2020 1:12 PM 9 o @ 0 @
API management L, e ® o WhiteSource Bolt & M '—“w..n.,.”.,
© | ot proec managerion bttt o bouech Bl - D

: e o Q_,@ el Vibe, then

[]
- SO ’ ‘ rg Shiocsize » ve r I fy
9 Codacy © 4
Automat views 10 h velop §

Semaphore Flaptastic

Code Climate ©

Sonar helps development teams fuel Al-enabled
development and build trust into every line of code.

Mobie Duplications.
P anagement o DeepScan @ e Depfu © -
Snyk, a developer-focused security startup that and Identifies vulnerabilities In open source applications,
- . - announced a $150 million Series C funding round today. This brings the company'’s total investment to
GltHub acqulres code analysls tool semmle TRUSTED BY OVER 7M DEVELOPERS AND 400K ORGANIZATIONS $250 million alongslide reports that put the company's valuation at more than $1 billion.

Frederic Lardinols @

1:30 pm EDT - September 18, 2019 O comment NANASN B Microsoft eb N Johnson&dJohnson WBARCLAYS epﬁzer

4
B sonarqube\\\ snyk

+ Semmle

S 3 Software and Societal Carnegie

Systems Department Me!lon :
University

There are lots of static analysis tools'

N o .

reviewdog

q{{l[/
") Java

A
& RuboCop

CHECKER

framework

What makes a good static analysis tool?

e Static analysis should be fast
« Don't hold up development velocity
« This becomes more important as code scales

» Static analysis should report few false positives
« Or developers will start to ignore warnings and alerts, and quality will decline

» Static analysis should be continuous

 Should be part of your continuous integration pipeline
« Even better: don't analyze the whole codebase; just the changes

» Static analysis should be informative

- Messages that help the developer to quickly locate and address the issue
« ldeally, it should suggest or automatically apply fixes

Software and Societal : I Carnegie
33') Systems Department https://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext Mellon

University

Static Analysis: Broad Classification

* Formatting Linters
 Shallow syntax analysis for enforcing code styles and formatting

 Pattern-Based Linters (“bug detectors”)

« Simple syntax or API-based rules for identifying common programming mistakes or
violations of best practice

« Type-Based Analysis

« Check conformance to user-defined types
« Types can be complex (e.g., “Nullable”)

« Data-Flow Analysis / Abstract Interpretation (Value Analysis)
« Deep program analysis to find complex error conditions
 e.g.,"can array index be out of bounds?”

Carnegie

D Software and Societal 8
Systems Department Mellon

University

Today

« Formatting Linters

 Pattern-Based Linters

« Type-Based Analysis

* Value Analysis (Data Flow & Abstract Interpretation)

 Analysis for Everything Else

Software and Societal g/[alﬂlegle
Systems Department elion

University

Today

« Formatting Linters

D Software and Societal Carnegie
Systems Department Mellon

University

Linters: Cheap, fast, and lightweight static
source analysis

Carnegie
83') Software and Soc t | https://www.perforce.com/blog/qac/what-lint-code-and-why-linting-important Mf‘llOIlg

Systems D epar tm . .
University

> Formatting Linters use shallow static
analysis to enforce formatting rules

« Ensure proper indentation

* Naming convention

* Line sizes

* Class nesting

* Documenting public functions

« Parenthesis around expressions
* What else?

Software and Soc t | Carnegie
330 Systems e epar artme Mellon

University

Style guidelines help to facilitate communication

Python

Style Guidelines

This docurment collects the emerging principles, conventions, abstractions, and best practices for wriling

) Rust code
.

Rust is evolving

lines are preliminary. The hope is that writing them

README Code of conduct MIT license Security

Downloads Documentation Community Success Stories News W

le. guidelines prov rd libraries.

Guideline statuses
= Python ») Python Developer's Guide ») PEP Index) PEP 8 - Style Guide for Python Code
Tweets P Every guideline has a status
e — * [FIXME]: Marks places where there is more work 1o b done. In some cases, that just means going :] 'Y

Airbnb JavaScript Style Guide() {

PEP 8 -- Style Guide for Python Code e .

 (FIXME #NNNNN]: Like [FIXME], bot links to the issue tracker

A mostly reasonable approach to JavaScript

We encourage you to contribute to our

PEP: 8 & [RFC #NNNNJ: Marks accepted guidelines, li

o the rust-lang RFC establishing them.

win prizes: The . X 2 i il
210 min gEs R e Guideline stabilization
b Author: Guido van Rossum <guido at python.org>, Barry Warsaw <barry at python.org>, Nick|
: e downloads [HSM/mONtAl downloads [ZBMJmonth] gitter FoichaE
Status: Active " : -
?ymnnbt\mnperss % e This guide is available in other languages too. See
Join and contibute o L Type: Ay

Created: 05-Jul-2001 Other Style Guides

be proposed, it should be filed

of Style

Post- 05-Jul-2001, 01-Aug-2013 < will be updated to maich, and w
@@, Python Software Foundation & History: ment
What's in this document
Contents This document is brokes into four parts

Outhan Nevainnere € & Guidelines by R

NTIAL GUIDE

, Editc nd Publishers
* Topical g

Table of Contents

with 0

The PSF

The Python Software Foundation

Guidelines are inherently opinionated, but consistency is the important point.
Agree to a set of conventions and stick to them.

https://www.chicagomanualofstyle.org/ | https://google.github.io/styleguide/ | https://www.python.org/dev/peps/pep-0008 | https://github.com/airbnb/javascript

Software and Societal Carnegie

Systems Department Me!lon :
University

https://www.chicagomanualofstyle.org/
https://google.github.io/styleguide/
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008

Use linters to enforce style guidelines

Don't rely on manual inspection during code review! Even better,
automatically apply the tool on save or commit.

Software and Societal https://checkstyle.sourceforge.io Cal'ﬂegle
Systems Department Mellon

University

Use linters to improve maintainability

* Why? We spend more time reading code than writing it
« Various estimates of the exact %, some as high as 80%

« Code is ownership is usually shared
 The original owner of some code may move on

« Code conventions make it easier for other developers to quickly
understand your code

D Software and Societal g/lalﬁlegle
Systems Department elion

University

Today

 Pattern-Based Linters

D Software and Societal Carnegie
Systems Department Mellon

University

Pattern-Based Analysis evaluates
program syntax against a set of rules

« Matches syntactic patterns (via abstract syntax tree) to identify
likely mistakes and APl misuses

« Good at finding use of disallowed and deprecated APIs, dangerous
language features, and obvious mistakes

* Provides fast, best effort bug finding when used appropriately
« Can only find issues for which there is a corresponding rule / pattern
« Some issues may incorrectly trigger in benign cases (false positives)
 Saves time during code review by checking for common mistakes

Carnegie

Mellon

D Software and Societal
Systems Department

University

Pattern-Based Analysis for JS/TS (®)estint

* De facto standard for pattern-based checks in JavaScript and
TypeScript. Integrates with editors (e.g., VS Code) out of the box

* “npm run lint” usually involves ESLint

* Provides rules that check for mistakes and enforce best practices
 Correctness Rules (“Possible Problems”) look for logic errors
« Suggestion Rules enforce best practices and clean code

« Automatically fixes the code for certain rule violations (--fix)
* by applying a deterministic, syntactic rewrite rule (no LLMs!)

Carnegie

33') 2;’2?;;?5"2353;‘52?‘ https://eslint.org/docs/latest/rules/ Mellon
University

What's the problem in this code?

setTimeout("doThing()", 100);

setinterval("x = x + 1", 1000);
setinterval(callbackStr, 500);

const f = new Function("a", "b", "return a + b");

D Software and Societal
Systems Department

Correctness Rule: no-implied-eval

« [dentifies implicit evaluation of strings as code
 equivalent to eval — a major security and reliability risk!
» stringified code escapes static analysis; may crash or cause problems
* user-provided strings open up the potential for remote code execution

// Bad: string evaluated as code // Good: pass functions/closures
setTimeout("doThing()", 100); setTimeout(() => doThing(), 100);
setinterval("x =x+ 1", 1000); setinterval(() =>{x=x+1;}, 1000);
const f = new Function("a", "b", "return a + b"); function add(a, b) { returna + b; }

Software and Societal Carnegie
Systems Department ://eslint. u -implied-ev. Mellon

University

https://eslint.org/docs/latest/rules/no-implied-eval
https://eslint.org/docs/latest/rules/no-implied-eval
https://eslint.org/docs/latest/rules/no-implied-eval
https://eslint.org/docs/latest/rules/no-implied-eval
https://eslint.org/docs/latest/rules/no-implied-eval

Suggested Rule: (no) “Yoda"

 Yoda condition flip operands
* Pro Yoda: it's impossible to accidentally use “=*
« Anti Yoda: it makes the code harder to read

/] ¥ Yoda style
if (“red” ===color){/*... ¥/}

// Preferred
if (color === “red”){/* ... */ }

Carnegie

830 Eyfiwm De S Stm etal https://eslint.org/docs/latest/rules/yoda Mellon

University

ESLint can be extended with plugins

» To find more code quality issues
« depend, Sonar]S, Unicorn, ...

 To scan different languages
* SQL, HTML, JSON, YAML, ...

* To identify issues with frameworks
« React, Angular, Vue, ...

* To identify issues with libraries
» |SDoc, jQuery, Require]s, ...

D Software and Societal S . ; ocli Carnegle
Systems Department . .

https://github.com/es-tooling/eslint-plugin-depend
https://github.com/es-tooling/eslint-plugin-depend
https://github.com/SonarSource/SonarJS/blob/master/packages/jsts/src/rules/README.md
https://github.com/SonarSource/SonarJS/blob/master/packages/jsts/src/rules/README.md
https://github.com/gajus/eslint-plugin-sql
https://github.com/gajus/eslint-plugin-sql
https://github.com/yeonjuan/html-eslint
https://github.com/azeemba/eslint-plugin-json
https://github.com/ota-meshi/eslint-plugin-yml
https://github.com/jsx-eslint/eslint-plugin-react
https://github.com/jsx-eslint/eslint-plugin-react
https://github.com/angular-eslint/angular-eslint
https://github.com/vuejs/eslint-plugin-vue
https://github.com/gajus/eslint-plugin-jsdoc
https://github.com/gajus/eslint-plugin-jsdoc
https://github.com/wikimedia/eslint-plugin-no-jquery
https://github.com/cvisco/eslint-plugin-requirejs
https://github.com/dustinspecker/awesome-eslint
https://github.com/dustinspecker/awesome-eslint
https://github.com/dustinspecker/awesome-eslint

Challenges with pattern-based analysis

« The analysis must produce few or (better yet) zero false positives
« Otherwise, developers won't be able to build the code!

» The analysis needs to be really fast

e Ideally < 100 ms
- Ifit takes longer, developers will become irritated and lose productivity

« Practically, this means the analysis needs to focus on “shallow” bugs rather than verifying
some complex logic spanning multiple functions/classes

* You can't just “turn on” a particular check
 Every instance where that check fails will prevent existing code from building
« There could be thousands of violations for a single check across large codebases

Carnegie

D Software and Societal
Systems Department Mellon

University

Today

- Type-Based Analysis

D Software and Societal Carnegie
Systems Department Mellon

University

Can you spot the bug?

// $./prog 5 helloWorld

// hello

int main(int c, char *#*v) { // prints first N characters of string
if (c < 3) return 1;
int n = atoi(v[1]);
char buf[8];
if (n < sizeof buf) {

memcpy(buf, v[2], n);

}
buf[n] = "\@"';
puts(buf) ;

Carnegie

Software and Societal
Systems Department Mellon

University

Can you spot the bug?

// $./prog 5 helloWorld

// hello

int main(int c, char *#*v) { // prints first N characters of string
if (c < 3) return 1;

int n = atoi(v[1]);

char buf[8];
if () { // negative values are allowed
memcpy (buf, v[2],); // n is promoted to size_t; becomes huge number!
b
buf[n] = "\0";
puts(buf) ;

Carnegie

Software and Societal .
Systems Department Mellon

University

Can you spot the bug?

// $./prog 5 helloWorld
// hello
int main(int c, char *#*v) { // prints first N characters of string
if (c < 3) return 1;
int n = atoi(v[1]);
char buf[8];
if (n < sizeof buf) {
memcpy(buf, v[2], n);
}
bufmﬂm = '\@"; // undefined behavior for n < 09!
puts(buf) ;

Carnegie

Software and Societal .
Systems Department Mellon

University

Microsoft: 70 percent of all security bugs White House urges developers to avoid C

are memory safety issues and C++, use 'memory-safe' programming
;grszgzsff:: tmhzr::g f;;t:t:r:sues has been hovering at I a n gu a g e S

@ ZD m By Les Pounder published 28 February 2024
g NET The languages may pose a security risk when used in critical

Written by Catalin Cimpanu, Contributor

Feb. 11,2019 at 7:48 a.m. PT SySte m S .

Serious flaw that lurked in sudo for 9
years hands over root privileges

Flaw affecting selected sudo versions is easy for unprivileged users to exploit.

MAKE ME A SANDWICH.

WHAT? MAKE
IT YOURSELF.

SUDO MAKE ME /
A SANDMCH

OKAY ‘ o NI
WWW‘””W .
& % 7 L= ol ‘lﬂv . [/ : {)t t+‘1’ j“ i L-’&&D. Ol
‘ ',ﬁ” L Py N RO W

ars TECHNICA Hﬁ;gr @iy c.C5!

D Software and Societal
Systems Department

€ Languages as the first line of defense

* Idea: Prevent entire classes of bugs before runtime!

« bad programs won't compile or fail checks; errors surface in editor / Cl
 provides strong guarantees about absence of certain bugs

- Languages provide memory sdfety in different ways

« Compile time (no GC): Rust. Language features (ownership, borrowing,
lifetimes) prevent memory errors in safe code

 Managed runtimes: E.g., JavaScript, Java, C#, Go. Relies on array bounds
+ garbage collection. Doesn't allow pointer arithmetic

« C++ with discipline: RAIl & smart pointers help to reduce leaks and
eliminate use-after-free, but they are not memory safe

D Software and Societal Carnegie
Systems Department . .

Can you spot the issue?

function compact(arr) {
if (orr.length > 10)
return arr.trim(o, 10)
return arr

: Carnegie
SsD Software and Societal https://www.typescriptlang.or, Mellor?

Systems Department . .
University

https://www.typescriptlang.org/
https://www.typescriptlang.org/

Memory-safe doesn’t imply type safety

_—=> function compact(arr) {
No edit i i
| 1tor warnings if Jorr.glength > 10)
1n JavaScript files return arr.trim(e, 10)

return arr

This code Crashes at ¥
runtime!

Il Cannot find name ‘orr’.

Software and Societal Carnegie
Systems Department https://www.typescriptlang.org Me!lon :
University

https://www.typescriptlang.org/
https://www.typescriptlang.org/

Memory-safe doesn’t imply type safety

THIS 1S MY
FAVORITE
LANGUAGE

- Javascript is dynamically and
loosely typed language

javascript

* Types are determined at runtime

 the same variable may hold values with
different types over time

- /\ Type errors only show up when
you run the code

* Uses aggressive type coercion to convert
values for compatibility

D Software and Societal Carnegie
Systems Department Mellon

University

TypeScript: JavaScript with Types

 TypeScript is a strongly typed language

e errors are caught before run-time!

» TypeScript is converted (“transpiled”) to JavaScript

/—> function compact(arr: string[]) {
TypeScript adds if (arr.length > 10)
natural syntax for return arr.slice(0, 10)
providing types } return arr

| .
Software and Societal Car flegle
Systems Department Mellon

University

Add Types to Existing Code via Annotations

- Add type annotations on top of the existing language
« allows you mix and match typed and untyped code -- easier to transition

// @ts—-check

_——=>/** @param {any[]} arr %/ TS

Using JSDoc to give function compact(arr) {

type information if (arr.length % 10)
return arr.trim(o, 10)

f=——Now TS has found 3

/#0k Property 'trim' does not exist on type 'anyl[]'. bad call. Arrays
return arr have slice, not

* JSDoc) v trim.

*/

D Software and Societal Carnegie
Systems Department Mellon

University

Enrich Type Systems via Annotations

« We don't need to be bound to just structural types!

« We can use annotations to layer additional semantics on top of
the base type system

 E.g.,Java Checker framework provides annotations that help to target null
pointer errors, uninitialized fields, information leaks, SQL injections,
incorrect physical units, bad format strings, ...

« Can guarantee the absence of certain defect classes
 provided that code is annotated correctly

CHECKER

framework

D Software and Societal g/lalﬁlegle
Systems Department elion

University

Example: Detecting null pointer exceptions

« @Nullable indicates that an // return value
expression may be null @NonNull String toString() { ... }

. @NonN.uII indicates that an // parameter
expression must never be null int compareTo(@NonNull String other)

« Guarantees that expressions L)

annotated with @NonNull will
never evaluate to null. Forbids
other expressions from being
dereferenced

33 D Software and Societal https://checkerframework.org/manual/#nullness-annotations Car negie

Systems Department Me!lon :
University

import org.checkerframework.checker.nullness.qual.*;

public class NullnessExampleWithWarnings {

public void example() {

@NonNull String foo = "foo": @Nullable is applied by

String bar = null; " default
foo = bar; |
Error: [assignment.type.incompatible] incompatible types in assignment.
printIn(foo.length()); found : @Initialized @Nullable String
required: @Unknownlnitialization @NonNull String

Carnegie

Software and Societal e
Systems Department Me!lon :
University

import org.checkerframework.checker.nullness.qual.*;

public class NullnessExampleWithWarnings {
public void example() {
@NonNull String foo = "foo";
1 — . lahla
String bar = null; // @N bar is refined to
if (bar !=null) { . @NonNull
foo = bar;
}
printin(foo.length());

}
}

| .
Software and Societal (@1 negie
Systems Department Mellon

University

Another example: Units Checker

- Guarantees operations are physically meaningful and use same
kind and units

e Kind annotations

« @Acceleration, @Angle, @Area, @Current, @Length, @Luminance, @Mass,
@Speed, @Substance, @Temperature, @Time

* Sl unit annotation oﬁﬁ
« @m, @km, @mm, @kg, @mPERs, @mPERs2, @radians, I |

@degrees, @A, ... B S) .
@

33 D Software and Societal https://www.nist.gov/pml/weights-and-measures/metric-si/si-units Carnegle

Systems Department Me!lon :
University

171 O AR PO BUS A T S T

" METRIC, ENGLSH, WHATEVER..."

Remember the Mars Climate Orbiter incident from 1999?

y SI M s[:" lE Blog Product ~ Solutions Learning Public Projects ~ Case Studies ~ Careers Pricing Login Sign Up

When NASA Lost a Spacecraft Due to

a Metric Math Mistake

WRITTEN BY UPDATED O} APPROX READING TIME
Ajay Harish March 10th, 2020 11 Minutes

Blog > CAE Hub > When NASA Lost a Spacecraft Due to a Metric Math Mistake

In September of 1999, after almost 10 months of travel to Mars, the Mars Climate Orbiter burned
and broke into pieces. On a day when NASA engineers were expecting to celebrate, the ground
reality turned out to be completely different, all because someone failed to use the right units,
i.e., the metric units! The Scientific American Space Lab made a brief but interesting video on this

very topic.

NASA'S LOST SPACECRAFT

The Metric System and NASA's Mars Climate Orbiter

The Mars Climate Orbiter, built at a cost of $125 million, was a 338-kilogram robotic space probe
launched by NASA on December 11, 1998 to study the Martian climate, Martian atmosphere, and
surface changes. In addition, its function was to act as the communications relay in the Mars
Surveyor ‘98 program for the Mars Polar Lander. The navigation team at the Jet Propulsion

Laboratory (JPL) used the metric system of millimeters and meters in its calculations, while

NASA’s Mars Climate Orbiter (cost of $327 million) was lost because of a discrepancy
between use of metric unit Newtons and imperial measure Pound-force.

33 D Software and Societal https://www.simscale.com/blog/2017/12/nasa-mars-climate-orbiter-metric

Systems Department

Carnegie

Mellon

University

import static org.checkerframework.checker.units.UnitsTools.m;
import static org.checkerframework.checker.units.UnitsTools.mPERs;
import static org.checkerframework.checker.units.UnitsTools.s;

void demo() {
@m int x;
X=5*m;

@m int meters=5 * m;
@s int seconds =2 *s;

@mPERs int speed = meters / seconds;
@m int foo = meters + seconds;
@s int bar = seconds - meters;

| .
Software and Societal &lall ilegle
Systems Department elion

University

import static org.checkerframework.checker.units.UnitsTools.m;
import static org.checkerframework.checker.units.UnitsTools.mPERs;
import static org.checkerframework.checker.units.UnitsTools.s;

void demo() { @m indicates that x represents meters
@m intx; ——

X=5*m;

= __To assign a unit, multiply appropriate
@m int meters = 5 * m: unit constant from UnitTools
@s int seconds =2 *s;

@mPERs int speed = meters / seconds;
@m int foo = meters + seconds;
@s int bar = seconds - meters;

| .
Software and Societal %Iall ilegle
Systems Department elion

University

Does this program compile?

import static org.checkerframework.checker.units.UnitsTools.m;
import static org.checkerframework.checker.units.UnitsTools.mPERs;
import static org.checkerframework.checker.units.UnitsTools.s;

void demo() { ~ @mindicates that x represents meters
@m intx; — o
X=5*m;

- __To assign a unit, multiply appropriate
@m int meters = 5 * m: unit constant from UnitTools
@s int seconds =2 *s;

@mPERs int speed = meters / seconds;
@m int foo = meters + seconds;
@s int bar = seconds - meters;

| .
Software and Societal %}lalﬁlegle
Systems Department elion

University

Does this program compile? No.

import static org.checkerframework.checker.units.UnitsTools.m;
import static org.checkerframework.checker.units.UnitsTools.mPERs;
import static org.checkerframework.checker.units.UnitsTools.s;

void demo() {
@mint x;
X=5*m;

@m int meters =5 * m;
@s int seconds =2 *s;

@mPERs int speed = meters / seconds;
@m int foo = meters + seconds;
@s int bar = seconds - meters;

Software and Societal
Systems Department

Addition and subtraction between
meters and seconds is physically
meaningless

Carnegie

Mellon

University

Limitations of Type-Based Static Analysis

« Can only analyze code that is annotated
« Requires that dependent libraries are also annotated
« Can be tricky to retrofit annotations into existing codebases

« Only considers the signature and annotations of methods
« Doesn't look at the implementation of methods that are being called

- Can't handle dynamically generated code well
« Examples: Spring Framework, Templates

« Can produce false positives!
« Byproduct of necessary approximations

Carnegie

D Software and Societal Mell
Systems Department elion
University

Today

 Value Analysis (Data Flow & Abstract Interpretation)

| .
Software and Societal Carnegie
Systems Department Mellon

University

Dataflow and Taint Analysis =
 Tracks how values move through a program (assignments, Ax
branches, function calls)
- Can data from an untrusted source reach a sink along a feasible path?
« Check if tainted data is sanitized before reaching sink

 Useful for finding security issues
« command and SQL injection; cross-site scripting; unsafe deserialization; ...

 requires models of frameworks, libraries, and sanitizers; if these models
are missing, results will contain false positives/negatives

« struggles with aliasing and dynamic features (e.g., eval, reflection)

Carnegie

Y. 4 D Tt https://codeqgl.github.com Mellon

Systems Department . .
University

Abstract Interpretation / Value Analysis

« Computes a sound over-approximations of £
program behavior in terms of an abstract domain

« Goal: determine if a property holds for all executions

Software Analyzers

« e.g., "y/x"is “X" ever 07
 abstract domain captures only the values/states M7
relevant to our property of interest
- e.g., "is zero?” /\

« Mostly restricted to embedded, safety critical code
« not suited to dynamic and reflective languages \/
« difficult to scale — explores all possible paths! L

D Software and Societal Carnegie
Systems Department Mellon

University

Today

- Analysis for Everything Else

| .
Software and Societal Carnegie
Systems Department Mellon

University

Static Analysis for Everything Else

- Static analysis isn't just for source code
« If it's machine readable, we can statically analyze it!

YA
ku btes ML

2
: ‘ Swagger.
Supportedby SMARTBEAR

Software and Soc t | Carnegie
330 Systems D epar e Mellon

University

Dependencies & Supply Chain

 Analysis can find dependencies with known vulnerabilities
(including transitive deps), malicious packages (e.g., typosquats),
and incompatible licenses by scanning manifests and images

vm2 3.9.19 Direct © 5 critical ~

npm - package-lock.json - Detected automatically

@babel/traverse 7.22.¢ Transitive © 3 moderate ~

npm - package-lock.json - Detected automatically

@babel/cli ~7.17.10 Transitive

npm - package.json - Detected automatically

browserify-sign 4.2.1 Transitive

npm - package-lock.json - Detected automatically

Software and Societal : . : : Cal'negle
Systems Department : . - - - Me!lon :
University

https://github.com/security/advanced-security/software-supply-chain
https://github.com/security/advanced-security/software-supply-chain
https://github.com/security/advanced-security/software-supply-chain
https://github.com/security/advanced-security/software-supply-chain
https://github.com/security/advanced-security/software-supply-chain
https://github.com/security/advanced-security/software-supply-chain
https://github.com/security/advanced-security/software-supply-chain
https://github.com/security/advanced-security/software-supply-chain
https://github.com/security/advanced-security/software-supply-chain

< Back to Blog

Shai-Hulud: Self-Replicating
Worm Compromises 500+
NPM Packages

The Shai-Hulud worm has infected over 500 NPM packages including
@ctrl/tinycolor in an unprecedented self-propagating supply chain attack. The
malware harvests AWS/GCP/Azure credentials using TruffleHog, establishes
persistence through GitHub Actions backdoors, and automatically spreads to
other maintainer packages - marking the first successful worm attack in the
NPM ecosystem.

Ashish Kurmi

September 15, 2025

.i0/blog/ctrl-tin

D Software and Societal
Systems Department

1 CRITICAL SUPPLY CHAIN SECURITY ALERT &4

mm | Package Compromise

'\“T"‘J/'\E" Ll/ <H|J

3upp|y Chaln Aftack

Self-propagating malware infects 40+ NPM packages

40+ 2M+ Critical

PACKAGES INFECTED WEEKLY DOWNLOADS SEVERITY LEVEL

es-compromised

Carnegie
Mellon
University

https://www.stepsecurity.io/blog/ctrl-tinycolor-and-40-npm-packages-compromised
https://www.stepsecurity.io/blog/ctrl-tinycolor-and-40-npm-packages-compromised
https://www.stepsecurity.io/blog/ctrl-tinycolor-and-40-npm-packages-compromised
https://www.stepsecurity.io/blog/ctrl-tinycolor-and-40-npm-packages-compromised
https://www.stepsecurity.io/blog/ctrl-tinycolor-and-40-npm-packages-compromised
https://www.stepsecurity.io/blog/ctrl-tinycolor-and-40-npm-packages-compromised
https://www.stepsecurity.io/blog/ctrl-tinycolor-and-40-npm-packages-compromised
https://www.stepsecurity.io/blog/ctrl-tinycolor-and-40-npm-packages-compromised
https://www.stepsecurity.io/blog/ctrl-tinycolor-and-40-npm-packages-compromised
https://www.stepsecurity.io/blog/ctrl-tinycolor-and-40-npm-packages-compromised
https://www.stepsecurity.io/blog/ctrl-tinycolor-and-40-npm-packages-compromised
https://www.stepsecurity.io/blog/ctrl-tinycolor-and-40-npm-packages-compromised
https://www.stepsecurity.io/blog/ctrl-tinycolor-and-40-npm-packages-compromised
https://www.stepsecurity.io/blog/ctrl-tinycolor-and-40-npm-packages-compromised
https://www.stepsecurity.io/blog/ctrl-tinycolor-and-40-npm-packages-compromised

Starting at September 8th, 13:16 UTC, our Aikido intel feed alerted us to a series packages _

being pushed to npm, which appeared to contains malicious code. These were 18 very popular ‘A How the Malware Works (Step by Step)

packages,
1. Injects itself into the browser

« backslash (0.26m downloads per week) q Josh Junon o Hooks core functions like fetch, wiLhttprequest , and wallet APIS (window.ethereun , Solana,
7 @k at-computer.l etc).

L] -
ST (RS Gon S B pED UiEey o Ensures it can intercept both web traffic and wallet activity.

IR LR LU Ll | have no access to my account at the moment. It's in npm's

2. Watches for sensitive data

¢ has-ansi (12.1m downloads per week = =
(=) hands fﬂr Now. S|ndre has alread}' bUUtEd me Uﬁ and pUthhEd o Scans network responses and transaction payloads for anything that looks like a wallet
e simple-swizzle (26.26m downloads per week) over chalk address or transfer.
e color-string (27.48m downloads per week) i o Recognizes multiple formats across Ethereum, Bitcoin, Solana, Tron, Litecoin, and
Bitcoin Cash.

e error-ex (4717m downloads per week)

+ color-name (19171m downloads per weok) debug a_nd color/color-string/color-convert are still affected, 3
« is-arrayish (73.8m downloads per week) alﬂng with ma ny others I'm sure. o Replaces the legitimate destination with an attacker-controlled address.

o Uses “lookalike” addresses (via string-matching) to make swaps less obvious.

. Rewrites the targets

¢ slice-ansi (59.8m downloads per week)

¢ color-convert (193.5m downloads per week) Ema“ came fr(}m Support [.at] npmjs [d (}t] help 4. Hijacks transactions before they’re signed
« wrap-ansi (197.99m downloads per week) o Alllters Ethe;eum and Solana transaction parameters (e.g., recipients, approvals,
allowances).

e ansi-regex (243.64m downloads per week) .) .
o Even if the Ul looks correct, the signed transaction routes funds to the attacker.
e supports-color (2871m downloads per week) Jis-arrayish [index.js
i . 5. Stays stealthy
* strip-ansi (261.17m downloads per week) « Back 1210C 76.8 kB
o Ifacrypto wallet is detected, it avoids obvious swaps in the Ul to reduce suspicion.
¢ chalk (299.99m downloads per week) . L)
o Keeps silent hooks running in the background to capture and alter real transactions.

1 module.exports = function isArrayish(obj) {

e debug (357.6m downloads per week) 2 if (robd || v

f obj === 'string") {

e ansi-styles (371.41m downloads per week)

All together, these packages have more than 2 billion downloads per week.

return obj instanceof Array || Array .isArray(obi} ||
(obj.length >= @ &% (obj.splice instanceof Function ||

(Object .getOwnPropertyDescriptor(obj, {obj.length - 1)) &% obj.constructor.name !

Eo® w o om oW oo owm Bow

12 const _@x112Fa8=_@x180;(function (_@x13c8b9, 0x35F668) { const _@x15b386=_0%188F,_ @x66ea25=_ax13c8b9();

«= »

D Software and Societal : » : Carnegie
Systems Department : : : Mellon

Universi

https://www.aikido.dev/blog/npm-debug-and-chalk-packages-compromised
https://www.aikido.dev/blog/npm-debug-and-chalk-packages-compromised
https://www.aikido.dev/blog/npm-debug-and-chalk-packages-compromised
https://www.aikido.dev/blog/npm-debug-and-chalk-packages-compromised
https://www.aikido.dev/blog/npm-debug-and-chalk-packages-compromised
https://www.aikido.dev/blog/npm-debug-and-chalk-packages-compromised
https://www.aikido.dev/blog/npm-debug-and-chalk-packages-compromised
https://www.aikido.dev/blog/npm-debug-and-chalk-packages-compromised
https://www.aikido.dev/blog/npm-debug-and-chalk-packages-compromised
https://www.aikido.dev/blog/npm-debug-and-chalk-packages-compromised
https://www.aikido.dev/blog/npm-debug-and-chalk-packages-compromised
https://www.aikido.dev/blog/npm-debug-and-chalk-packages-compromised
https://www.aikido.dev/blog/npm-debug-and-chalk-packages-compromised
https://www.aikido.dev/blog/npm-debug-and-chalk-packages-compromised

Config, Cl, and Infrastructure-as-Code

* We can find issues in config files (e.g., JSON, YAML, TOML)
« find formatting problems (e.g., bad indentation, missing close bracket)
« find schema issues (e.g., required fields, bad values)

« We can check our Cl setup / workflows (e.g., GitHub Actions)
« unpinned actions; forbidden env vars; unsafe permissions

* We can also check infrastructure-as-code (e.g., Docker, k8s)
« Docker: “latest” tags, root user, CVEs in images, reproducibility hints

Carnegie

Mellon

D Software and Societal
Systems Department

University

&he New 1lork Times

See more from our live coverage

Remember Crowdstrike?
Chaos and Confusion: Tech Outage

* [ssue was a bad update to a config file Catises DisFuptions Worldwide

. Airlines, hospitals and le! t ffected aft
« Could have it been caught before push? couasiiie,s cvbersceurty company sentouta fawed sfevare

update.

£f sharefullarticle 2> [] [CJoest

Travelers waiting to check in at the airport in Hamburg, Germany, on Friday. Bodo
Marks/DPA, via Associated Press

| .
Software and Societal Carnegie
Systems Department Mellon

University

Key Takeaways

D Software and Societal Carnegie
Systems Department Mellon

University

The best approaches use a combination of

tools with mixed strengths and weaknesses

How Many of All Bugs Do We Find?
A Study of Static Bug Detectors

Andrew Habib
andrew.a. habib@gmail.com
Department of Computer Science
TU Darmstadt
Germany

ABSTRACT

Static bug detectors are becoming increasingly popular and are
widely used by professional software developers. While most work
on bug detectors focuses on whether they find bugs at all, and
on how many false positives they report in addition to legitimate
warnings, the inverse question is often neglected: How many of all
real-world bugs do static bug detectors find? This paper addresses
this question by studying the results of applying three widely used
static bug detectors to an extended version of the Defects4] dataset
that consists of 15 Java projects with 594 known bugs. To decide
which of these bugs the tools detect, we use a novel methodology
that combines an automatic analysis of warnings and bugs with a
manual validation of each candidate of a detected bug. The results
of the study show that: (i) static bug detectors find a non-negligible
amount of all bugs, (ii) different tools are mostly complementary to
each other, and (iii) current bug detectors miss the large majority
of the studied bugs. A detailed analysis of bugs missed by the static
detectors shows that some bugs could have been found by variants
of the existing detectors, while others are domain-specific problems
that do not match any existing bug pattern. These findings help
potential users of such tools to assess their utility, motivate and out-
line directions for future work on static bug detection, and provide
a basis for future comparisons of static bug detection with other
bug finding techniques, such as manual and automated testing.

D Software and Societal
Systems Department

Michael Pradel

michael@binaervarianz.de
Department of Computer Science
TU Darmstadt
Germany

International Conference on Automated Software Engineering (ASE "18), Sep-
tember 3-7, 2018, Montpellier, France. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3238147 3238213

1 INTRODUCTION

Finding software bugs is an important but difficult task. For average
industry code, the number of bugs per 1,000 lines of code has been
estimated to range between 0.5 and 25 [21]. Even after years of
deployment, software still contains unnoticed bugs. For example,
studies of the Linux kernel show that the average bug remains in
the kernel for a surprisingly long period of 1.5 to 1.8 years [8, 24].
Unfortunately, a single bug can cause serious harm, even if it has
been subsisting for a long time without doing so, as evidenced by
examples of software bugs that have caused huge economic loses
and even killed people [17, 28, 46].

Given the importance of finding software bugs, developers rely
on several approaches to reveal programming mistakes. One ap-
proach is to identify bugs during the development process, e.g.,
through pair programming or code review. Another direction is
testing, ranging from purely manual testing over semi-automated
testing, e.g., via manually written but automatically executed unit
tests, to fully automated testing, e.g., with Ul-level testing tools.
Once the software is deployed, runtime monitoring can reveal so
far missed buss. e.o.. collect information about abnormal runtime

Tool Bugs

Error Prone]
Infer 5
SpotBugs 18

Total: 31

Total of 27 unique bugs

https://software-lab.org/publications/ase2018_static_bug detectors_study.pdf

SpotBugs

14

Error Prone

Infer

Figure 4: Total number of bugs found by all three static
checkers and their overlap.

Carnegie
Mellon

University

How is this different to using Al tools?

e Static analysis is driven by a set of deterministic rules
« we can confidently apply them and obtain stronger assurances

* LLMs are probabilistic
« we can't repeat results; some results will be catastrophically incorrect
 but, LLMs are potentially richer and more expressive
 patterns are implicitly captured in the latent space

e [t makes sense to use both in different contexts

* Cl: static analysis!
« PRs: Al-provided suggestions and draft changes

D Software and Societal g/lalﬁlegle
Systems Department elion

University

Which tool to use?

« Depends on use case and available resources

« Formatters: Fast, cheap, easy to address issues or set ignore rules
- Pattern-based linters: Intuitive, but need to deal with false positives

- Type-annotation-based checkers: More manual effort required; needs
overall project commitment. But good payoff once adopted

- Deep analysis tools: Can find tricky issues, but can be costly. Might need
some awareness of the analysis to deal with false positives

- The best QA strategy involves multiple analysis, testing, and
inspection techniques!

Carnegie

D Software and Societal
Systems Department

Course Announcements

 Midterm review session
« Monday, February 23
« GHC 4401 (Rashid)

« Midterm
* Thursday, February 26

* If you need a disability accommodation, please schedule with ODR
immediately.

 Project 2C due FhrursdayFebruary-26 Friday, February 27

Carnegie

D Software and Societal Mell
Systems Department elion

University

	Opening
	Slide 2: Shifting Left with Static Analysis
	Slide 3: Smoking Section
	Slide 4: Course Announcements
	Slide 5: Learning Goals
	Slide 6: What are Program Analysis Tools?
	Slide 7: What static analysis can and cannot do
	Slide 8: The Bad News: Rice’s Theorem Every static analysis is necessarily incomplete, unsound, undecidable, or a combination thereof
	Slide 9: Static Analysis is well suited to detecting certain kinds of defect
	Slide 10: Dynamic analysis reasons about executions
	Slide 11: Static analysis has many applications
	Slide 12: Static Analysis vs. Dynamic Analysis
	Slide 13: Activity: Analyze the Python program dynamically
	Slide 14: Activity: Analyze the Python program statically

	An Outline of Static Analysis
	Slide 15: Static Analysis
	Slide 16: Static Analysis is Key to Shifting Left
	Slide 17: Static Analysis is a key part of Continuous Integration
	Slide 18: Reflecting on NodeBB
	Slide 19: Static analysis is integrated in your IDE
	Slide 20: Static analysis used to be an academic amusement. Now it’s heavily commercialized.
	Slide 21: There are lots of static analysis tools!
	Slide 22: What makes a good static analysis tool?
	Slide 23: Static Analysis: Broad Classification
	Slide 24: Today

	Formatters
	Slide 25: Today
	Slide 26: Linters: Cheap, fast, and lightweight static source analysis
	Slide 27: 📏 Formatting Linters use shallow static analysis to enforce formatting rules
	Slide 28: Style guidelines help to facilitate communication
	Slide 29: Use linters to enforce style guidelines
	Slide 30: Use linters to improve maintainability

	Pattern-Based Analysis
	Slide 31: Today
	Slide 32: Pattern-Based Analysis evaluates program syntax against a set of rules
	Slide 33: Pattern-Based Analysis for JS/TS
	Slide 34: What’s the problem in this code?
	Slide 35: Correctness Rule: no-implied-eval
	Slide 36: Suggested Rule: (no) “Yoda”
	Slide 37: ESLint can be extended with plugins
	Slide 38: Challenges with pattern-based analysis

	Type-Based Analysis
	Slide 39: Today
	Slide 40: Can you spot the bug?
	Slide 41: Can you spot the bug?
	Slide 42: Can you spot the bug?
	Slide 43
	Slide 44: 🛡️ Languages as the first line of defense
	Slide 45: Can you spot the issue?
	Slide 46: Memory-safe doesn’t imply type safety
	Slide 47: Memory-safe doesn’t imply type safety
	Slide 48: TypeScript: JavaScript with Types
	Slide 49: Add Types to Existing Code via Annotations
	Slide 50: Enrich Type Systems via Annotations
	Slide 51: Example: Detecting null pointer exceptions
	Slide 52
	Slide 53
	Slide 54: Another example: Units Checker
	Slide 55
	Slide 56
	Slide 57
	Slide 58: Does this program compile?
	Slide 59: Does this program compile? No.
	Slide 61: Limitations of Type-Based Static Analysis

	Deep Analysis
	Slide 62: Today
	Slide 63: Dataflow and Taint Analysis
	Slide 64: Abstract Interpretation / Value Analysis

	Analysis for things other than source code!
	Slide 65: Today
	Slide 66: Static Analysis for Everything Else
	Slide 67: Dependencies & Supply Chain
	Slide 68
	Slide 69
	Slide 71: Config, CI, and Infrastructure-as-Code
	Slide 72: Remember Crowdstrike?

	Closing
	Slide 73: Key Takeaways
	Slide 74: The best approaches use a combination of tools with mixed strengths and weaknesses
	Slide 75: How is this different to using AI tools?
	Slide 76: Which tool to use?
	Slide 77: Course Announcements

