
QA: Dynamic Analysis
17-313 Spring 2025

Foundations of Software Engineering

https://cmu-313.github.io

Michael Hilton, Austin Henley, and Nadia Nahar

https://cmu-313.github.io/

• Teamwork:

• “Every member of the team must contribute to

the implementation”.

• Evidence of contribution

• GitHub commits/PRs

• Individual grade penalty may apply in case of

insufficient contribution

• Contact course staff to request regrades

Administrivia

Review Session UPDATE

• NOT Today, we will update.

• Likely Sat 3-5PM

Learning Goals

• Describe random test-input generation strategies such as

fuzz testing

• Identify and discuss the key challenges associated with

performance testing in software development.

• Understand the ideas behind chaos engineering and how

it is used to test resiliency of cloud-based applications

• Describe A/B testing for usability

• Recommend appropriate dynamic analysis techniques for

specific software quality issues.

Automated Analysis for Functional and Non-
Functional Properties

● Correctness – Static Analysis and Testing

● Robustness – Fuzzing

● Performance – Profiling

● Scalability – Stress testing

● Resilience – Soak testing

● Reliability – Chaos Engineering

● Usability – A/B testing

Automated Analysis for Functional and Non-
Functional Properties

● Correctness – Static Analysis and Testing

● Robustness – Fuzzing

● Performance – Profiling

● Scalability – Stress testing

● Resilience – Soak testing

● Reliability – Chaos Engineering

● Usability – A/B testing

Outline

• Fuzz Testing

• Performance Testing and Debugging

• Testing in Production

• Reliability: Chaos Engineering

• GUI and Usability: A/B Testing

Security and Robustness

8

Communications of the ACM (1990)

“

”
How to identify these bugs?

Infinite monkey theorem

“a monkey hitting keys at random on a typewriter keyboard for

an infinite amount of time will almost surely type any given text,

including the complete works of William Shakespeare. “

https://en.wikipedia.org/wiki/Infinite_monkey_theorem

Fuzz Testing

Input Program
Execute

w0o19[a%#
A 1990 study found crashes in:

adb, as, bc, cb, col, diction, emacs, eqn, ftp,

indent, lex, look, m4, make, nroff, plot,

prolog, ptx, refer!, spell, style, tsort, uniq,

vgrind, vi

/dev/random

Common Fuzzer-Found Bugs in C/C++

Causes: incorrect arg validation, incorrect type casting,

executing untrusted code, etc.

Effects: buffer-overflows, memory leak, division-by-zero, use-

after-free, assertion violation, etc. (“crash”)

Impact: security, reliability, performance, correctness

Mutation-Based Fuzzing (e.g. Radamsa)

Input
Pick

Input’
Random

Mutation
Program

ExecuteInitial
Input

Input
Input

Input

Seeds

<foo></foo> <woo>?</oo>

Coverage-Guided Fuzzing (e.g. AFL)

Input
Pick

Input’
Random

Mutation
Program

Execute

Save

?

Execution feedback

No

Yes

Add

Input’

Initial
Input

Input
Input

Input

Seeds

Coverage

Instrumentation

New branch

coverage?

<foo></foo> <woo>?</oo>

Mutation Heuristics

▪ Binary input
▪ Bit flips, byte flips

▪ Change random bytes

▪ Insert random byte chunks

▪ Delete random byte chunks

▪ Set randomly chosen byte chunks to interesting values e.g. INT_MAX, INT_MIN, 0, 1, -1, …

▪ Text input
▪ Insert random symbols relevant to format (e.g. “<“ and “>” for xml)

▪ Insert keywords from a dictionary (e.g. “<project>” for Maven POM.xml)

▪ GUI input
▪ Change targets of clicks

▪ Change type of clicks

▪ Select different buttons

▪ Change text to be entered in forms

▪ … Much harder to design

Fuzzing in practice

• Google uses ClusterFuzz to fuzz all Google products

• Supports multiple fuzzing strategies
• “As of February 2023, ClusterFuzz has found ~27,000 bugs

in Google (e.g. Chrome).”

Fuzzing in practice

• After the OpenSSL Heartbleed vulnerability discovered in

2016, Google launched OSS-Fuzz

• Free service for open source projects

• “The project must have a significant user base and/or be

critical to the global IT infrastructure.”

• OSS-Fuzz privately alerts developers to the bugs detected.

• Supports CI (e.g., triggered from GitHub actions)

OSS-Fuzz: Free Fuzzing for Open Source
Software

“As of August 2023, OSS-Fuzz has helped identify and fix over 10,000 vulnerabilities and 36,000 bugs across 1,000 projects.”

Some projects include: nodejs, django, mysql-server, redis-py, apache-httpd, openvpn, openssl

https://bugs.chromium.org/p/oss-fuzz/issues/list?q=Type%3DBug-Security%20label%3Aclusterfuzz%20-status%3ADuplicate%2CWontFix&can=1
https://bugs.chromium.org/p/oss-fuzz/issues/list?q=Type%3DBug%20label%3Aclusterfuzz%20-status%3ADuplicate%2CWontFix&can=1
https://github.com/google/oss-fuzz/tree/master/projects

Activity:

Pick one scenario based on where you are seating

• E-Commerce Web Application (front rows)

• Automotive Software for Self-Driving Cars (middle rows)

• Mobile Gaming Application (back rows)

Discuss in groups of 2-3 the applicability of fuzz testing in your scenario,

considering:

- Types of inputs to fuzz.

- Potential vulnerabilities or bugs fuzz testing might uncover.

- Specific challenges in implementing fuzz testing for the scenario.

Bonus: How fuzz testing could be integrated into the development cycle for that

particular application?

Performance Testing and
Debugging

Performance Testing

● Goal: Identify performance bugs. What are these?
• Unexpected bad performance on some subset of inputs

• Performance degradation over time

• Difference in performance across versions or platforms

● Not as easy as functional testing. What’s the baseline?
• Fast = good, slow = bad // but what’s the threshold?

• How to get reliable measurements?

• How to debug where the issue lies?

Performance regression testing helps
identify trends

● Measure execution time of critical components
● Log execution times and compare over time

Source:
https://chromium.googlesource.com/chromium/src/+/refs/heads/main/docs/speed/addressing_performance_regressions.md

Performance bugs are “bad” bugs

• Fixing performance bugs is usually more difficult than fixing non-
performance bugs

• Performance bugs usually don’t generate incorrect results or
crashes

• Difficult to diagnose:
• system load, hardware configuration, network conditions, user-specific

workflows, interactions with other systems
• Big impact on user experience

A search query in Google Data Centers

Dick Sites - "Data Center Computers: Modern Challenges in CPU Design"

Catching performance bugs

● Observation in natural environment
● Real-time data collection
● Understanding ecosystem impact
● Non-invasive techniques
● Behavioral pattern analysis

● Observation in real-time operation
● Monitoring system performance & resources
● Analyzing software’s interaction with its surroundings
● Minimal impact on running application
● Detecting anomalies and performance issues

Profiling and tracing

• Profiling is a process to analyze and measure the performance of a

program or specific parts of its code (e.g., functions).

• Tracing is about understanding the flow of execution and the

behavior of a program.

• Record sequential events (function calls) that occur during the

execution of a program

• Both can be used to identify bottlenecks in execution time and

memory

Performance analysis via
instrumentation

• Embedding additional code to monitor the program's behavior

• Usage:

• Source Code (Static): Additional instructions for data

collection.

• Binary Files (Dynamic): Inserting monitoring code at

runtime without altering the source.

• Applications:

• Profiling: Execution time, function call frequency, and

resource usage.

• Tracing: Record detailed execution flow, tracking function

entries/exits and event sequences.

What’s the output of this program?

Sampling stack traces

Sampling stack traces

Flame Graphs

Flame Graphs

How to read a Flame Graph?

● Top edges of the flame

graph show the functions

that were running on when

the stack trace was collected

● Top down shows ancestry

● Box width proportional to

presence in stack traces

Q. What does the flame graph for this
code look like?

f5() is more
commonly found at
the top of the stack

traces when they were
collected.

f6() - f10() appear
less frequently at the
top of the stack traces

Profilers often included in IDEs

Domain-Specific Perf Testing
(e.g. JMeter for Java web apps)

http://jmeter.apache.org

http://jmeter.apache.org/

Stress testing

● Scalability/Robustness testing technique: test beyond the
limits of normal operation.

● Can apply at any level of system granularity.

● Key idea: throw large amounts of input / requests and see
how the program behaves

● Often a way to test the error-handling capabilities of the
application

Real Issues: Disney+ Launch

● Lots of issues reported on launch day.

● Disney had planned for a spike in traffic.
• Tested massive concurrent video streaming capability.

● BUT: the stress was in paths other than streaming
• User account creation

• Logins and auth

• Browsing old titles

Soak testing

● A system may behave exactly as expected under artificially
limited execution conditions, but fail in production after
extended use.
• E.g., Memory leaks may take longer to lead to failure

● Soak testing a system involves applying a significant load
over a significant period of time and observing system
resilience.

● Time-consuming to run but useful to apply at big release
milestones or when making infrastructure changes.

Activity:

Pick one scenario based on where you are seating

• E-Commerce Web Application (front rows)

• Automotive Software for Self-Driving Cars (middle rows)

• Mobile Gaming Application (back rows)

Discuss in groups of 2-3:

• Enumerate specific performance challenges in the your scenario.

• Pick one dynamic analysis technique to address some of these

challenges.

Testing in Production

Beta testing

Telemetry

Reliability testing

● What happens when some components of a large complex
system fail? Can the system recover and keep working?

● How can you test the reliability of something as complex as
Netflix or Google maps or Instagram?

● One idea: simulate a large-scale deployment and induce
random failures in various components

● Another idea…
Test in Production with Chaos Engineering

What is chaos engineering?

● "Chaos Engineering is the discipline of experimenting

on a system in order to build confidence in the system's

capability to withstand turbulent conditions in

production.“

principlesofchaos.org

Chaos Engineering: Testing in Production

● Purposefully take down components in a live deployment.

● Observe system response. Do failovers work correctly?

● Tests the failure-handling and fallback capabilities of large
systems.

● Useful in preparing for natural disasters or cyberattacks.

Example: Google

Terminate network in Sao Paulo for testing:

• Hidden dependency takes down links in Mexico which would

have remained undiscovered without testing

Turn off data center to find that machines won’t come back:

• Ran out of DHCP leases (for IP address allocation) when a

large number of machines come back online unexpectedly.

Why would you break things on purpose?

Failures in Microservice Architectures

Network may be partitioned

Server instance may be down

Communication between services may be delayed

Server could be overloaded and responses delayed

Server could run out of memory or CPU

Example: Netflix

Significant deployment on AWS cloud. Hundreds of
updates to microservices and infrastructure
through the day.

Chaos Monkey randomly takes down AWS
instances or network connections or randomly
changes config files.

How to tell ”are we still good?”
Key metric: Stream Starts per Second (SPS)
Measures availability

Testing GUIs and Usability

Automating GUI/Web Testing

● This is hard
● Capture and Replay Strategy

• mouse actions
• system events

● Test Scripts: (click on button labeled "Start" expect value X
in field Y)

● Lots of tools and frameworks
• e.g. Selenium for browsers

● Can avoid load on GUI testing by separating model from
GUI

● Beyond functional correctness?

Usability: A/B testing

● Controlled randomized experiment with two variants, A
and B, which are the control and treatment.

● One group of users given A (current system); another
random group presented with B; outcomes compared.

● Often used in web or GUI-based applications, especially to
test advertising or GUI element placement or design
decisions.

Example

● A company sends an advertising email to its customer
database, varying the photograph used in the ad...

Example: group A (99% of users)

Act now!

Sale ends soon!

Example: group B (1%)

Act now!

Sale ends soon!

Bing Experiment

• Experiment: Ad Display at Bing

• Suggestion prioritized low

• Not implemented for 6 months

• Ran A/B test in production

• Within 2h revenue-too-high alarm triggered

suggesting serious bug (e.g., double billing)

• Revenue increase by 12% - $100M annually in US

• Did not hurt user-experience metrics

Kohavi, Ron, Diane Tang, and Ya Xu. "Trustworthy Online Controlled Experiments: A Practical Guide to A/B Testing." 2020.

The power of online experimentation

Source: https://cognetik.com/why-you-should-build-an-ab-test-dashboard/

https://cognetik.com/why-you-should-build-an-ab-test-dashboard/

A/B Testing

• Requires monitoring tools and telemetry

• Requires good metrics and statistical tools to identify significant

differences.

• E.g. clicks, purchases, video plays

• Must control for confounding factors

• Automation:

• Stop experiments when confident in results

• Stop experiments resulting in bad outcomes (crashes, very low sales)

• Automated reporting, dashboards

61

Learning Goals

• Describe random test-input generation strategies such as

fuzz testing

• Identify and discuss the key challenges associated with

performance testing in software development.

• Understand the ideas behind chaos engineering and how

it is used to test resiliency of cloud-based applications

• Describe A/B testing for usability

• Recommend appropriate dynamic analysis techniques for

specific software quality issues.

	Slide 1: QA: Dynamic Analysis
	Slide 2: Administrivia
	Slide 3: Review Session UPDATE
	Slide 4: Learning Goals
	Slide 5: Automated Analysis for Functional and Non-Functional Properties
	Slide 6: Automated Analysis for Functional and Non-Functional Properties
	Slide 7: Outline
	Slide 8: Security and Robustness
	Slide 9
	Slide 10: Infinite monkey theorem
	Slide 11: Fuzz Testing
	Slide 12: Common Fuzzer-Found Bugs in C/C++
	Slide 13: Mutation-Based Fuzzing (e.g. Radamsa)
	Slide 14: Coverage-Guided Fuzzing (e.g. AFL)
	Slide 15: Mutation Heuristics
	Slide 16: Fuzzing in practice
	Slide 17: Fuzzing in practice
	Slide 18: OSS-Fuzz: Free Fuzzing for Open Source Software
	Slide 19: Activity:
	Slide 20: Performance Testing and Debugging
	Slide 21: Performance Testing
	Slide 22: Performance regression testing helps identify trends
	Slide 23: Performance bugs are “bad” bugs
	Slide 24: A search query in Google Data Centers
	Slide 25: Catching performance bugs
	Slide 26: Profiling and tracing
	Slide 27: Performance analysis via instrumentation
	Slide 28: What’s the output of this program?
	Slide 29: Sampling stack traces
	Slide 30: Sampling stack traces
	Slide 31: Flame Graphs
	Slide 32: Flame Graphs
	Slide 33: How to read a Flame Graph?
	Slide 34: Q. What does the flame graph for this code look like?
	Slide 35
	Slide 36: Profilers often included in IDEs
	Slide 37: Domain-Specific Perf Testing (e.g. JMeter for Java web apps)
	Slide 38: Stress testing
	Slide 39: Real Issues: Disney+ Launch
	Slide 40: Soak testing
	Slide 41: Activity:
	Slide 42: Testing in Production
	Slide 43: Beta testing
	Slide 44: Telemetry
	Slide 45: Reliability testing
	Slide 46: What is chaos engineering?
	Slide 47: Chaos Engineering: Testing in Production
	Slide 48: Example: Google
	Slide 49: Why would you break things on purpose?
	Slide 50: Failures in Microservice Architectures
	Slide 51: Example: Netflix
	Slide 52: Testing GUIs and Usability
	Slide 53: Automating GUI/Web Testing
	Slide 54: Usability: A/B testing
	Slide 55: Example
	Slide 56: Example: group A (99% of users)
	Slide 57: Example: group B (1%)
	Slide 58: Bing Experiment
	Slide 59: The power of online experimentation
	Slide 60
	Slide 61: A/B Testing
	Slide 62: Learning Goals

