Beyond Traditional Testing
with Dynamic Analysis

17-313: Foundations of Software Engineering
https://cmu-313.github.io

Michael Hilton and Josh Sunshine
Spring 2026

DSftw and Soc tI
Systems Depar tm

https://cmu-313.github.io/
https://cmu-313.github.io/
https://cmu-313.github.io/

Course Announcements

 Midterm review session
- Monday, February 23 @ 7pm
« GHC 4401 (Rashid)

« Midterm
» Thursday, February 26

« If you need a disability accommodation, please schedule with ODR
immediately.

 Project 2C due FhrursdayFebruary26 Friday, February 27

Carnegie

Software and Societal
S3 Mellon

Systems Department 5 .
University

Learning Goals

« Understand how dynamic analysis complements static analysis
« Recognize the strengths and limitations of dynamic techniques
 Use runtime oracles to make failures observable

 Explore fuzz testing

Carnegie

D Software and Societal ;
Systems Department Me!lon .
University

Recap: Static vs. Dynamic Analysis

srcjcontrollers/accounts/posts.js (G

136 b
17 1
138 %
A
148 postsController.getBookmarks = async function (req, res, next) {
101 await getPostsFromUserset('account/booknarks’, req, res, ® next);

Static Analysis

This function expects 3 arguments, but 4 were provided.

1z %
143
144 postsController.getPosts = async function (req, res, next) {
145 . await getPastsFromUserSet(account/posts’, req, res, nest);
146]
“
G ’
*
) ™
A » Plugins.hoshs. fire(‘actionssuth.everrigelogin' b
) .) etse
- acal((passheatocantaocki trve)

—_— Dynamic Analysis

care.sp1”, new BearerStrategy((), Aath.vers tyToken)):

Software and Societal (Al‘cll'llt‘glt‘.
Systems Department Mellon tv

Recap: Shifting Left

 Key Idea: Find and prevent issues as early as possible
» Many issues can't be found via static analysis

Attention

to o
Quality Shift Left Tf%ﬂg%r;ol

Model Model

Plan Develop Test Deploy Monitor
& Design & Build & Release & Analyze

Software and Societal (Alal'llt‘glt‘.
Systems Department Mellon

University

Let’s just write more tests?

What are the challenges and limitations
of traditional, example-based testing?

Software and Societal
Systems Department

Fuzz testing and input
generation

Communications of the ACM (1990)

“ On a

parto Wil Lar ks and fan o dark and stormy night one of the

Study OF the authors was logged on to his work-

station on a dial-up line from home

Reliﬂbility OF and the rain had affected the

phone lines; there were frequent

- spurious characters on the line.
The author had to race to see if he
could type a sensible sequence of
characters before the noise scram-
bled the command. This line noise
was not surprising; but we were
surprised that these spurious char-
acters were causing programs to
crash.

uUtilities ?

. ; How can we identify these bugs?

Al -~ .
33 Software and Societal Car negie

Systems Department Me!lon .
University

Infinite Monkey Theorem

“0 monkey hitting keys at random on a typewriter keyboard for
an infinite amount of time will almost surely type any given text,
including the complete works of William Shakespeare. “

Al -~ .
Software and Societal I(\J’Ialﬁlegm
Systems Department elion
University

https://en.wikipedia.org/wiki/Infinite_monkey_theorem
https://en.wikipedia.org/wiki/Infinite_monkey_theorem
https://en.wikipedia.org/wiki/Infinite_monkey_theorem
https://en.wikipedia.org/wiki/Infinite_monkey_theorem

Fuzz Testing randomly generates inputs and
checks for program crashes

w0019 [a%#
/dev/random m—> Program
Execute 1 A 1990 study found crashes in:
adb, as, bc, cb, col, diction,
1 emacs, eqn, ftp, indent, lex, look,

m4, make, nroff, plot, prolog, ptx,
refer!, spell, style, tsort, uniq,
vgrind, vi

Al -~ .
Software and Societal (A/(:II negie
Systems Department Mellon

University

Common Fuzzer-Found Bugs in C/C++

Causes: incorrect arg validation, incorrect type casting, executing
untrusted code, etc.

Effects: buffer-overflows, memory leak, division-by-zero, use-after-
free, assertion violation, etc. (“crash”)

Impact: security, reliability, performance, correctness

Al -~ .
Software and Societal (J’al negie
Systems Department Mellon

University

Mutation-Based Fuzzing (e.g., Radamsa)

Seeds

<foo></foo> <W00>?7</00>

Initial
ﬁ

Random

Mutation Execute

https://gitlab.com/akihe/radamsa

Al -~ .
Software and Societal (@1 negie
Systems Department Mellon

University

https://gitlab.com/akihe/radamsa
https://gitlab.com/akihe/radamsa
https://gitlab.com/akihe/radamsa
https://gitlab.com/akihe/radamsa
https://gitlab.com/akihe/radamsa
https://gitlab.com/akihe/radamsa

Mutation Heuristics

 Binary Input
+ bit flips, byte flips ',}1'3
+ modify, insert, delete random byte chunks i
» set randomly chosen byte chunks to interesting values e.g. INT_MAX, »
INT_MIN, O, 1, -1, ... | ‘! e
« Text Input /"/”""'*1 v
+ insert random symbols relevant to format (e.g. “<" and “>" for xml) F:F H‘. -'"._"' IJ|_
* insert keywords from a dictionary (e.g. “<project>" for Maven POM.xml) m P
+ GUI Input I~
+ change click types and targets
» change text

» click different buttons

<html><head><title>Hello</title></head><body>World
</body></html>

: Carnegie
83 SRl Sl] https://www.fuzzingbook.org/html/GreyboxGrammarFuzzer.html Me]]mf

Systems Department 5 .
University

Coverage-Guided Fuzzing (e.g., AFL)

Seeds

<foo></foo> <W00>7</00>

Initial

— Program

. Random
Pick
i€ Mutation

Coverage
IAdC.It , Instrumentation
npu

Execute

Execution feedback

1

<

New branch
coverage?

®

https://Ilcamtuf.coredump.cx/afl/

Software and Societal (A.‘cll'llt‘glt‘.
Systems Department Mellon

https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/

Finding Security Bugs =

QO Meta

Meta Bug Bounty

If you believe you have found a security vulnerability on Meta (or another member
of the Meta family of companies), we encourage you to let us know right away.

Total rewards for 2025 Total rewards to date

$4,353,212 $25,497,082

$300K* $130K* $30K*

$20K* $10K* $5K* $500*
Mobile RCE Account Quest 2FA Bypass Contact point Page admin Minimum
WhatsApp Takeover Persistent full deanonymization disclosure bounty
. secure boot
Private bvpass
Processing ye

Software and Societal
Systems Department

Carnegie
Mellon

Univ

Fuzzing in Practice

« After the OpenSSL Heartbleed vulnerability discovered
in 2016, Google launched OSS-Fuzz

* Free service for open-source projects

 “The project must have a significant user base and/or be
critical to the global IT infrastructure.”

« OSS-Fuzz privately alerts developers to vulnerabilities

Carnegie

Software and Societal
S3 Mellon

Systems Department 5 .
University

Fuzzing in Practice
5.
9.5%
« Google uses ClusterFuzz to fuzz all of intialzed
. int overflow & co
their products wnkow o
11.1%
* supports multiple fuzzing strategies ?g’”d: asserts
null aere 19.6%
8.4%
* As of February 2026, ClusterFuzz has
found 30,000+ bugs in Google code (e.g.,
Chromium)
Fuzzers — Input data N Rﬁiﬁ;‘?d
!
Ch Builds with extra check 25,000 ,
c:;z.:e _F {;.Ig.ﬁ:jrees)slsrzsitigzr}g cores!!! CIEHIED g GTLEOETE g AT

Carnegie

Mellon

Software and Societal
Systems Department

University

OSS-Fuzz: Free Fuzzing for Open-Source Software

- Upstream project

3. Sync and
build from

Builder

(Cloud Build)
google/oss-fuzz GCS bucket
5. Download
4. Upload and fuzz
ip : . ClusterFuzz
1. Write fuzzers
2. Commit build configs 6. File bugs,
Verify fixes
8. Fix bugs) .
T =1~ Track deadlines
| TTT Sheriffbot
Developer

Issue tracker (monorail)

As of May 2025, OSS-Fuzz has helped identify and fix over 13,000 vulnerabilities and 50,000
bugs across 1,000 projects. (e.g., nodejs, django, openvpn, openssl)

Software and Societal
Systems Department

thoughtworks

Fuzz-testing in the Al era

Rediscovering an old technique for new challenges

< Engineering Stack <

Testing Security Blog

By Richard Gall

Published: July 07, 2025

Fuzz testing is a software testing technigue that’s been around for some time. But, despite being nearly
forty years old 2, the technigue hasn't been widely adopted by software development teams. While it’s
commonly used in specialist fields like penetration testing, it's often viewed as somewhat marginal by
the industry mainstream.

Al -~ .
Software and Societal : . : . : : Car negie
://arstechnica.com/information-technolo namic-analysis-software-sapienz Mellon

Systems Department -
University

https://arstechnica.com/information-technology/2017/08/facebook-dynamic-analysis-software-sapienz/
https://arstechnica.com/information-technology/2017/08/facebook-dynamic-analysis-software-sapienz/
https://arstechnica.com/information-technology/2017/08/facebook-dynamic-analysis-software-sapienz/
https://arstechnica.com/information-technology/2017/08/facebook-dynamic-analysis-software-sapienz/
https://arstechnica.com/information-technology/2017/08/facebook-dynamic-analysis-software-sapienz/
https://arstechnica.com/information-technology/2017/08/facebook-dynamic-analysis-software-sapienz/
https://arstechnica.com/information-technology/2017/08/facebook-dynamic-analysis-software-sapienz/
https://arstechnica.com/information-technology/2017/08/facebook-dynamic-analysis-software-sapienz/
https://arstechnica.com/information-technology/2017/08/facebook-dynamic-analysis-software-sapienz/
https://arstechnica.com/information-technology/2017/08/facebook-dynamic-analysis-software-sapienz/
https://arstechnica.com/information-technology/2017/08/facebook-dynamic-analysis-software-sapienz/
https://arstechnica.com/information-technology/2017/08/facebook-dynamic-analysis-software-sapienz/
https://arstechnica.com/information-technology/2017/08/facebook-dynamic-analysis-software-sapienz/
https://arstechnica.com/information-technology/2017/08/facebook-dynamic-analysis-software-sapienz/
https://arstechnica.com/information-technology/2017/08/facebook-dynamic-analysis-software-sapienz/

What are the limitations of random
input generation?

Activity: Wordle Input Generator

ﬂﬂllﬂ

1. How can you generate
random inputs for
“match_guess ?

2. What inputs are more
likely to find bugs in
“match_guess ?

3. Describe a strategy for
generating these “likely
bug” inputs.

Carnegie

Software and Soc t I
Mellon’
SSD Systems D epar tm Ulll\t‘ll sity

Oracles

83 Software and Societal Carnegie

Systems Department I\“’le!l()lf
Univ

Testing is Only as Good as your Oracle

« An oracle decides if behavior is correct for a given input

- strong oracles catch bugs that weak oracles miss
» designing strong oracles is difficult and often the bottleneck

Al -~ .
Software and Societal (jdl negie
Systems Department Me!lon .
University

Oracle: Assertions in Example-Based Tests

* This is the most common type of oracle in traditional tests

» These assertions are often hardcoded to a specific test input
- tedious to write for complex outputs (e.g., documents, actions)
* can be very brittle (e.g., formatting changes lead to test failures)
» non-determinism and environment coupling lead to flaky tests

it('should redirect to login if user is not logged in', () = {
{ response, body } = request.get(${nconf.get('url')}/me/bookmarks");
assert.equal(response.statusCode, 200);
assert(body.includes('Login to your account'), body.slice(@, 500));

});

Al -~ .
Software and Societal Car negie
Systems Department Me!lon .
University

Oracle: The Program Shouldn’t Crash!

* This is the oracle used by most fuzzing approaches

* This oracle is a generic property that is not tied to any test inputs
» that allows us to automatically generate and test any input
* but the oracle is weak (i.e., not crashing does not imply correct)

« We can make the oracle slightly stronger by using sanitizers
« detects illegal program states that might not cause an immediate crash

* instruments the program at compile time (e.g., -fsanitize=address)
« finds more safety issues but slows down execution / fuzzing ~

« doesn't reveal logic bugs

Software and Societal Carnegie
S3 Mellon

Systems Department 5 .
University

Oracle: Assertions in Source Code

 Assertions are executable specifications
« document intended behavior (pre/postconditions, invariants)

 This oracle is generic and not tied to any test inputs
- if we add assertions, we can use fuzzing to find some logic bugs!

function toUSD(amountCents: number): string {
assert(Number.isInteger (amountCents), 'amount must be integer cents');
assert(amountCents >= 0, 'amount must be non-negative');
const dollars = (amountCents / 100).toFixed(2);
return ~SS{dollars} ;

Al -~ .
Software and Societal : i (_;j(ll negie
Systems Department Mellon

University

https://blog.regehr.org/archives/1091

Assertions catch infections earlier

 Finds more bugs (e.g., during fuzzing) and helps to localize them

variables

® During execution,
the state becomes

time

® Basic idea: Observe
a transition from
sane to

Carnegie

83D §§§§;§§Q§§§;‘§ﬁ;' https://www.whyprogramsfail.com/pdf/AssertingExpectations.pdf %Ie!lon" _
niversity

Assertions should always be true unless

you have a bug in your code

« Assertions state invariants: conditions that must always hold if the
program is correct (e.g., impossible states, internal consistency).

* Never rely on asserts for control flow or user-visible behavior
« Make sure that your assertions don’t contain side effects

« Use exceptions and returns for errors that can reasonably happen
and should be handled (e.g., invalid inputs, failed API calls).

Al -~ .
83 Software and Societal Car negie

Systems Department Mellon
University

Assertions in the Wild: Apache Cassandra

« Used to enforce an invariant that must hold throughout sorting

@SuppressWarnings("fallthrough")
binarySort([1 a, lo, hi, start,
LongComparator c) {
(DEBUG) lo <= start && start <= hi;
(start == 1lo)
start++;
(; start < hi; start++) {
pivot = a[start];

left = lo;
right = start;
(DEBUG) left <= right;

Mellon
University

33 Software and Societal https://sourcegraph.com/github.com/apache/cassandra/- Carnegie

Systems Department /blob/src/java/org/apache/cassandra/utils/LongTimSort.java?L227

Assertions in the Wild: SQLite & LLVM

 Used to enforce a precondition and find bugs at call sites

jsonCacheInsert(
sqlite3_context *ctx,
JsonParse *pParse

)

JsonCache *p;

assert(pParse->zJson!=0);

assert(pParse->bJsonIsRCStr);

assert(pParse->delta==0);

p = sqlite3_get_auxdata(ctx, JSON_CACHE_ID);
(p==0){

sqlite3 *db = sqlite3_context_db_handle(ctx);

Software and Societal
Systems Department

S3

11db / include / 11db / Interpreter OptionValueUInt64.h (7

Blame

m_current_value = value;
true;

false;

SetDefaultValue(value) {
assert(value >= m_min_value && value <= m_max_value &&
"disallowed default value");
m_default_value = value;
true;

Carnegie
Mellon
Universi

https://sourcegraph.com/github.com/sqlite/sqlite/-/blob/src/json.c?L439-443

Assertions in the Wild: Firefox

» Used to enforce a postcondition that makes sure audio packet is

the correct size after processing

namespace mozilla {
void AudioInputProcessing::Process(AudioProcessingTrackx aTrack,

MOZ_ASSERT(static_cast<uint32_t>(mSegment.GetDuration()) +
mPacketizerInput—->FramesAvailable() ==
mPacketizerInput—>mPacketSize);

MOZ_ASSERT(mSegment.GetDuration() >= 1);
MOZ_ASSERT(mSegment.GetDuration() <= mPacketizerInput->mPacketSize);
¥

Software and Societal Cal'negie
330 Systems Department https://searchfox.org/firefox-main/source/dom/media/webrtc/MediaEngineWebRTCAudio.cpp %Ie!l(m '
niversity

Activity: Wordle Oracle

1. What precondition
assertions could you add
to mark_guess ?

2. What postcondition
assertions could you add?

EE
LN

mlmlz|~njole

Software and Societal (A.‘cll'llt‘glt‘.
Systems Department Mellon

University

	Title
	Slide 1: Beyond Traditional Testing with Dynamic Analysis

	Administrivia
	Slide 2: Course Announcements

	Opening
	Slide 3: Learning Goals
	Slide 4: Recap: Static vs. Dynamic Analysis
	Slide 5: Recap: Shifting Left
	Slide 6: Let’s just write more tests?
	Slide 7: What are the challenges and limitations of traditional, example-based testing?

	Fuzzing
	Slide 8: Fuzz testing and input generation
	Slide 9
	Slide 10: Infinite Monkey Theorem
	Slide 11: Fuzz Testing randomly generates inputs and checks for program crashes
	Slide 12: Common Fuzzer-Found Bugs in C/C++
	Slide 13: Mutation-Based Fuzzing (e.g., Radamsa)
	Slide 14: Mutation Heuristics
	Slide 15: Coverage-Guided Fuzzing (e.g., AFL)
	Slide 16: Finding Security Bugs = 💵
	Slide 17: Fuzzing in Practice
	Slide 18: Fuzzing in Practice
	Slide 19: OSS-Fuzz: Free Fuzzing for Open-Source Software
	Slide 20
	Slide 21: What are the limitations of random input generation?
	Slide 22: Activity: Wordle Input Generator

	Oracles
	Slide 24: Oracles
	Slide 25: Testing is Only as Good as your Oracle
	Slide 26: Oracle: Assertions in Example-Based Tests
	Slide 27: Oracle: The Program Shouldn’t Crash!
	Slide 28: Oracle: Assertions in Source Code
	Slide 29: Assertions catch infections earlier
	Slide 30: Assertions should always be true unless you have a bug in your code
	Slide 31: Assertions in the Wild: Apache Cassandra
	Slide 32: Assertions in the Wild: SQLite & LLVM
	Slide 33: Assertions in the Wild: Firefox
	Slide 34: Activity: Wordle Oracle

