
CI and Deployment
17-313 Spring 2024

Foundations of Software Engineering

https://cmu-313.github.io

Michael Hilton and Eduardo Feo Flushing

Thanks to Jon Bell for slide inspiration:

https://neu-se.github.io/CS4530-Spring-2024/

https://cmu-313.github.io/

Administrivia

• Midterm re-grade requests open

• Thursday will be an activity, bring your laptop. If you have

not done recitation, you should do that before Thursday

Review: Continuous Integration

CI/CD Pipeline overview

Code Edit Tests Run

Code Merged
Code

Deployed

History of CI

(1999) Extreme Programming (XP) rule: “Integrate Often”

(2000) Martin Fowler posts “Continuous Integration” blog

(2001) First CI tool

(2005) Hudson/Jenkins

(2011) Travis CI

(2019) GitHub Actions

Observation

CI helps us catch errors
before others see them

8

Agile values fast quality feedback loops

• Faster feedback = lower cost to fix bugs

Example: Some bugs slip through testing,
even in highly-regulated industries

https://www.adn.com/alaska-news/aviation/2023/02/20/after-alaska-airlines-planes-bump-runway-a-scramble-to-pull-the-plug/

“That morning, a software bug in an update to the
DynamicSource tool caused it to provide seriously undervalued
weights for the airplanes.

The Alaska 737 captain said the data was on the order of 20,000
to 30,000 pounds light. With the total weight of those jets at
150,000 to 170,000 pounds, the error was enough to skew the
engine thrust and speed settings.

Both planes headed down the runway with less power and at
lower speed than they should have. And with the jets judged
lighter than they actually were, the pilots rotated too early

Both the Max 9 and 737-900ER have long passenger cabins,
which makes them more vulnerable to a tail strike when the nose
comes up too soon.” …

… “A quick interim fix proved easy: When operations staff turned
off the automatic uplink of the data to the aircraft and switched
to manual requests “we didn’t have the bug anymore.”

Peyton said his team also checked the integrity of the calculation
itself before lifting the stoppage. All that was accomplished in 20
minutes.

The software code was permanently repaired about five hours
later.

Peyton added that even though the update to the
DynamicSource software had been tested over an extended
period, the bug was missed because it only presented when
many aircraft at the same time were using the system.

Subsequently, a test of the software under high demand was
developed.”

Photo: saiters_photography (IG, different plane/airpot)

https://www.adn.com/alaska-news/aviation/2023/02/20/after-alaska-airlines-planes-bump-runway-a-scramble-to-pull-the-plug/

CI is triggered by commits, pull
requests, and other actions
Example: Small scale CI, with a service like CircleCI, GitHub
Actions or TravisCI

commits code to

Developer

GitHub

TravisCI

checks for updates

Runs build for each commit

GitHub
Actions

CircleCI

Automating Feedback Loops is
Powerful

Consider tasks that are
done by dozens of
developers (e.g.

testing/deployment)

© Randal Munroe/xkcd, licensed CC-BY-SA
https://xkcd.com/1205/

https://xkcd.com/1205/

Attributes of effective CI processes
• Policies:

• Do not allow builds to remain broken for
a long time

• CI should run for every change

• CI should not completely replace pre-
commit testing

• Infrastructure:
• CI should be fast, providing feedback

within minutes or hours

• CI should be repeatable (deterministic)

Effective CI processes are run often
enough to reduce debugging effort

• Failed CI runs indicate a bug was
introduced, and caught in that run

• More changes per-CI run require
more manual debugging effort to
assign blame

• A single change per-CI run
pinpoints the culprit

Effective CI processes allocate enough resources to
mitigate flaky tests
• Flaky tests might be dependent on timing (failing due to

timeouts)

• Running tests without enough CPU/RAM can result in
increased flaky failure rates and unreliable builds

“The Effects of Computational Resources on Flaky Tests”, Silva et al

https://arxiv.org/abs/2310.12132

CI in practice at Google

• Large scale example: Google TAP
• 50,000 unique changes per-day, 4 billion test cases per-day

• Pre-submit optimization: run fast tests for each individual change (before
code review).
Block merge if they fail.

• Then: run all affected tests; “build cop” monitors and acts immediately to
roll-back or fix

• Build cop monitors integration test runs

• Average wait time to submit a change: 11 minutes

“Software Engineering at Google: Lessons Learned from Programming Over Time,” Wright, Winters and Manshreck, 2020 (O’Reilly)

How can we continuously
update our software in
production?

Cloud Computing enables
CD

Cloud
Computing/Deployment
refresher

Many apps rely on common
infrastructure

• Content delivery network: caches
static content “at the edge” (e.g.
cloudflare, Akamai)

• Web servers: Speak HTTP, serve
static content, load balance
between app servers (e.g.
haproxy, traefik)

• App servers: Runs our application
(e.g. nodejs)

• Misc services: Logging,
monitoring, firewall

• Database servers: Persistent data

Content

Delivery

Network

Web

Servers

App

Servers

Database

servers

Misc

Services

Clients

What parts of this infrastructure can be shared across
different clients?

Content

Delivery

Network

Web

Servers

App

Servers

Database

servers

Misc

Services

Client 1 App 1

Client 3 App 3

Client 2 App 2

What is the infrastructure that needs to
be shared?
• Our apps run on a “tall stack”

of dependencies

• Traditionally this full stack is
self-managed

• Cloud providers offer products
that manage parts of that
stack for us:

• “Infrastructure as a service”

• “Platform as a service”

• “Software as a Service”

Shared infrastructure analogy: Pizza
• Four ways to get pizza:

Make yourself, take and
bake, delivery, dine out

• Vendor manages different
levels of the stack, achieving
economies of scale

• When would you choose
one over the other?

Pizza as a Service — by Albert Barron (unlicensed?)

Multi-Tenancy creates economies of
scale
• At the physical level:

• Multiple customers’ physical machines in the same data center
• Save on physical costs (centralize power, cooling, security, maintenance)

• At the physical server level:
• Multiple customers’ virtual machines in the same physical machine
• Save on resource costs (utilize marginal computing capacity – CPUs, RAM,

disk)

• At the application level:
• Multiple customer’s applications hosted in same virtual machine
• Save on resource overhead (eliminate redundant infrastructure like OS)

• “Cloud” is the natural expansion of multi-tenancy at all levels

Cloud infrastructure scales elastically

• “Traditional” computing infrastructure requires capital
investment

• “Scaling up” means buying more hardware, or maintaining excess
capacity for when scale is needed

• “Scaling down” means selling hardware, or powering it off

• Cloud computing scales elastically:
• “Scaling up” means allocating more shared resources

• “Scaling down” means releasing resources into a pool

• Billed on consumption (usually per-second, per-minute or per-hour)

Cloud services gives on-demand access
to infrastructure, “as a service”
• Vendor provides a service catalog of “X as a service”

abstractions that provide infrastructure as a service

• API allows us to provision resources on-demand

• Transfers responsibility for managing the underlying
infrastructure to a vendor

Infrastructure as a Service: Virtual
Machines
• Virtual machines:

• Virtualize a single large server into
many smaller machines

• Separates administration
responsibilities for physical machine
vs virtual machines

• OS limits resource usage and
guarantees quality per-VM

• Each VM runs its own OS

• Examples:
• Cloud: Amazon EC2, Google Compute

Engine, Azure

• On-Premises: VMWare, Proxmox

• The “instruction set” is
an abstraction of the
underlying hardware

• The operating system
presents the same
abstraction + OS calls.

Let’s look more closely at this software
stack

Hardware

ISA

Operating System

ISA+OS Calls

Your App

App Dependencies

The operating system allows several
apps to share the underlying hardware

Hardware

ISA

Operating System
ISA+OS Calls

App1

App1

Dependencies

App2

App2

Dependencies

Virtual Machine 1

A virtual machine allows shared
hardware

Hardware

ISA

OS1

App1

App1

Depe
nden
cies

App2

App2

Depe
nden
cies

Virtual Machine Manager

ISA

Virtual Machine 2

ISA

OS2

App1

App1

Depe
nden
cies

App2

App2

Depe
nden
cies

Virtual Machines facilitate multi-
tenancy
• Multi-Tenancy

• Multiple customers sharing same physical machine, oblivious to
each other

• Decouples application from hardware
• virtualization service can provide “live migration” transparent to the

operating system, maximizing utilization

• Faster to provision and release
• VM v. physical machines == ~mins v. ~hours

Virtual Machines to Containers

• Each VM contains a full operating system

• What if each application could run in the same (overall)
operating system? Why have multiple copies?

• Advantages to smaller apps:
• Faster to copy (and hence provision)

• Consume less storage (base OS images are usually 3-10GB)

Containers run layered images,
reducing storage space

• Images are defined
programmatically as a series of
“build steps” (e.g. Dockerfile)

• Each step in the build becomes a
“layer”

• Built images can be shared and
cached

• To run a container, the layers are
linked together with an “overlay”
filesystem

FROM node:18-buster-slim

RUN apt-get update && apt-get install python3

build-essential libpango1.0-dev libcairo2-dev

libjpeg-dev libgif-dev -y

RUN mkdir -p /usr/src/app

WORKDIR /usr/src/app

COPY ./ /usr/src/app

RUN npm ci

RUN npm run build

CMD ["npm", "start"]

Example image specification (Dockerfile)

node:18-buster-slim

python3, buildessential,

pango, cairo, libjpeg, libgif

Our app

Our compiled app

Example image, with layers shown

Containers run layered images,
reducing storage space
• Many images may share the same lower layers (e.g. OS,

NodeJS, some system dependencies)

• Layers are shared between images

• Multi-tenancy: N running containers only require one copy of
each layer (they are read-only)

node:18-buster-slim

python3, buildessential,

pango, cairo, libjpeg, libgif

Orion’s app

Orion’s compiled app

Two images, sharing two layers

node:18-buster-slim

python3, buildessential,

pango, cairo, libjpeg, libgif

Ripley’s app

Ripley’s compiled app

A container contains your apps and all
their dependencies
• Each application is encapsulated in a “lightweight container,”

includes:
• System libraries (e.g. glibc)

• External dependencies (e.g. nodejs)

• “Lightweight” in that container images are smaller than VM
images - multi tenant containers run in the OS

• Cloud providers offer “containers as a service”
(Amazon ECS Fargate, Azure Kubernetes,
Google Kubernetes)

• You might put
several apps in a
single container,
together with their
dependencies

• Might have only one
copy of shared
dependencies

A container contains your apps and all
their dependencies

Hardware

ISA

Operating System
ISA+OS Calls

Container 2

App1

App1
Depend
encies

App2

App2
Depend
encies

Container 1

App1

App1
Depend
encies

App2

App2
Depend
encies

• Vendor supplies an
on-demand instance
of an operating
system

• Eg: Linux version NN

• Vendor is free to
implement that
instance in a way
that optimizes costs
across many clients.

XaaS: Containers as a Service

Hardware

ISA

Operating System
ISA+OS Calls

Container 2

App1

App1
Depend
encies

App2

App2
Depend
encies

Container 1

App1

App1
Depend
encies

App2

App2
Depend
encies

We don’t care what’s under here: it’s an
abstraction!

• Docker provides a
standardized
interface for your
container to use

• Many vendors will
host your Docker
container

• An open standard for
containers also exists
(“OCI”)

Docker is the prevailing container
platform

Hardware

ISA

Operating System
Docker

Container 2

App1

App1
Depend
encies

App2

App2
Depend
encies

Container 1

App1

App1
Depend
encies

App2

App2
Depend
encies

We don’t care what’s under here: it’s an
abstraction!

Tradeoffs between VMs and Containers

• Performance is comparable

• Each VM has a copy of the OS and libraries
• Higher resource overhead

• Slower to provision

• Support for wider variety of OS’

• Containers are “lightweight”
• Lower resource overhead

• Faster to provision

• Potential for compatibility issues, especially with older software

Platform-as-a-Service: vendor supplies
OS + middleware
• Middleware is the stuff between our app and

a user’s requests:
• Content delivery networks: Cache static content

• Web Servers: route client requests to one of our
app containers

• Application server: run our handler functions in
response to requests from load balancer

• Monitoring/telemetry: log requests, response
times and errors

• Cloud vendors provide managed middleware
platforms too: “Platform as a Service”

Content

Delivery

Network

Web

Servers

App

Servers

Database

servers

Monitoring/T

elemetry

Clients

PaaS is often the simplest choice for
app deployment

• Platform-as-a-Service provides components most
apps need, fully managed by the vendor: load
balancer, monitoring, application server

• Some PaaS run your app in a container: Heroku, AWS
Elastic Beanstalk, Google App Engine, Railway, Vercel…

• Other PaaS run your apps as individual
functions/event handlers: AWS Lambda, Google Cloud
Functions, Azure Functions

• Other PaaSs provide databases and authentication,
and run your functions/event handlers: Google Firebase,
Back4App

Physical data center

Network

Storage

Physical Server

Operating System

Middleware

Application

Virtualization

PaaS

PaaS in the style of Heroku runs
containers

• Takes a web app as input
• Provide an entry point to code, e.g. “npm start”, or optionally, a

container specification

• Hosts web app at chosen URL, can scale resources
up/down on-demand

• Load balancer fully managed by Heroku, scaling transparent

• Auto-scale down to use no resources, spins up container on
reception of a request

• Dashboard for monitoring/reporting

• Newcomers provide similar functionality (Vercel,
Railway, etc)

• Host PaaS on-premises, too (Caprover)

Container

Our NodeJS App

Container

Our NodeJS App

Load balancer +

traffic monitor

HTTP requests

How to deploy web apps?

• What we need:
• A server that can run our application
• A network that is configured to route requests from

an address to that server

• Questions to think about:
• What software do we need to run besides our

application code? (Databases, caches, etc?)

• Where does this server come from? (Buy/Borrow?)

• Who else gets to use this server? (Multi-tenancy or
exclusive?)

• Who maintains the server and software? (Updates OS,
libraries, etc?)

Self-managed vs Vendor-managed
Infrastructure

• Consider who manages each tier in the stack

• Benefits to vendor-managed options:
• More ways to reduce resource consumption,

improve resource utilization

• Less management burden

• Less capital investment, more flexibility in scaling

• Benefits to self-managed options:
• Greater flexibility to migrate between software

platforms

• Potentially less operating expenses

Self-managed Vendor-managed

Physical data center

Network

Storage

Physical Server

Operating System

Middleware

Application

Virtualization

SaaS

Physical data center

Network

Storage

Physical Server

Operating System

Middleware

Application

Traditional, on-
premises computing

Virtualization

Cloud Infrastructure is best for variable
workloads
• Consider:

• Does your workload benefit from ability to scale up or down?
• Variable workloads have different demands over time (most common)
• Constant workloads require sustained resources (less common)

• Example:
• Need to run 300 VMs, each 4 vCPUs, 16GB RAM

• Private cloud:
• Dell PowerEdge Pricing (AMD EPYC 64 core CPUs)
• 7 servers, each 128 cores, 512GB RAM, 3 TB storage = $162,104

• Public cloud:
• Amazon EC2 Pricing (M7a.xlarge instances, $0.153/VM-hour)
• 10 VMs for 1 year + 290 VMs for 1 month: $45,792.90
• 300 VMs for 1 year: $402,084.00

Public clouds are not the only option

• “Public” clouds are connected to the internet and available for
anyone to use

• Examples: Amazon, Azure, Google Cloud, DigitalOcean

• “Private” clouds use cloud technologies with on-premises, self-
managed hardware

• Cost-effective when a large scale of baseline resources are needed

• Example management software: OpenStack, VMWare, Proxmox,
Kubernetes

• “Hybrid” clouds integrate private and public (or multiple public)
clouds

• Effective approach to “burst” capacity from private cloud to public cloud

Cloud enables Continuous
Delivery

Continuous Delivery

• “Faster is safer”: Key values of continuous delivery
• Release frequently, in small batches

• Maintain key performance indicators to evaluate the impact of updates

• Phase roll-outs

• Evaluate business impact of new features

Motivating scenario: Failed Deployment at Knight Capital

“In the week before go-live, a Knight engineer manually
deployed the new RLP code in SMARS to its 8 servers. However,
he made a mistake and did not copy the new code to one of the
servers. Knight did not have a second engineer review the
deployment, and neither was there an automated system to
alert anyone to the discrepancy. “

https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html

https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html

What could Knight capital have done better?

• Use capture/replay testing instead of driving market

conditions in a test

• Avoid including “test” code in production deployments

• Automate deployments

• Define and monitor risk-based KPIs

• Create checklists for responding to incidents

Continuous Delivery != Immediate Delivery

• Even if you are deploying every day (“continuously”), you still have

some latency

• A new feature I develop today won't be released today

• But, a new feature I develop today can begin the release pipeline

today (minimizes risk)

• Release Engineer: gatekeeper who decides when something is

ready to go out, oversees the actual deployment process

Split Deployments Mitigate Risk
• Idea: Deploy to a complete production-like environment, but

don't have users use it, collect preliminary feedback

• Lower risk if a problem occurs in staging than in production

• Examples:
• “Eat your own dogfood”
• Beta/Alpha testers

Continuous Delivery Leverages Relies
on Staging Environments

Testing

Environment

Staging Environment Production Environment

Beta/Dogfooding User Requests

Developer
Environments

Revisions are “promoted” towards production

Q/A takes place in each stage (including production!)

Continuous Delivery Tools
• Simplest tools deploy from a branch to a service (e.g. Render.com, Heroku)

• More complex tools:

• Auto-deploys from version control to a staging environment + promotes through
release pipeline

• Monitors key performance indicators to automatically take corrective actions

• Example: “Spinnaker” (Open-Sourced by Netflix, c 2015)

Example CD pipeline from Spinnaker’s documentation: https://spinnaker.io/docs/concepts/#application-deployment

https://spinnaker.io/
https://spinnaker.io/docs/concepts/

Continuous Delivery Relies on Monitoring
• Consider both direct (e.g. business) metrics, and indirect (e.g. system) metrics

• Hardware

• Voltages, temperatures, fan speeds, component health

• OS

• Memory usage, swap usage, disk space, CPU load

• Middleware

• Memory, thread/db connection pools, connections, response time

• Applications

• Business transactions, conversion rate, status of 3rd party components

Tools for Monitoring Deployments
• Nagios (c 2002): Agent-based architecture (install agent on each monitored

host), extensible plugins for executing “checks” on hosts

• Track system-level metrics, app-level metrics, user-level KPIs

Monitoring can help identify operational issues

Grafana (AGPL, c 2014) InfluxDB (MIT l icense, c 2013)

Continuous Delivery Tools Take Automated Actions

• Example: Automated roll-back of updates at Netflix based on
SPS

https://www.youtube.com/watch?v=qyzymLlj9ag

https://www.youtube.com/watch?v=qyzymLlj9ag

From Monitoring to Observability
• Understanding what is going on inside of our deployed systems

Example dashboard by DataDog:
https://www.datadoghq.com/blog/gke-dashboards-integration-improvements/

https://www.datadoghq.com/blog/gke-dashboards-integration-improvements/

New Tools allow Observability inside of Apps, Too

Screenshot: https://www.akitasoftware.com/blog-posts/plug-and-play-endpoint-views-for-metrics-errors

https://www.akitasoftware.com/blog-posts/plug-and-play-endpoint-views-for-metrics-errors

Monitoring Services Take Automated Actions

Beware of Metrics

• McNamara Fallacy
• Measure whatever can be easily measured
• Disregard that which cannot be measured easily

• Presume that which cannot be measured easily
is not important

• Presume that which cannot be measured easily
does not exist

Deployment Example: Facebook.com
• Pre-2016

~1 week of development

3x Daily

Stabilize

release branch

Weekly

3 days

All changes from week

that are ready for release

Release Branch
4 days All changes that survived stabilizing

Developers working in their own branch

Your change doesn’t go out unless

you’re there that day at that time to
support it!

~1 week of development

master branch

When feature is ready, push as 1 change to master branch

production “When in doubt back out”

Deployment Example

• Chuck Rossi, Director Software Infrastructure & Release
Engineering @ Facebook

“Our main goal was to make sure that the

new system made people’s experience

better — or at least, didn’t make it worse.

After a year of planning and development,

over the course of three days we enabled

100% of our production web servers to

run code deployed directly from master”

“Rapid release at massive scale” https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/

https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/

Deployment Example

• Post-2016: Truly continuous releases from master branch

https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/

https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/

Compare Continuous Delivery and TDD

• Test driven development
• Write and maintain tests per-feature

• Unit tests help locate bugs (at unit level)

• Integration/system tests also needed to locate interaction-related
faults

• Continuous delivery
• Write and maintain high-level observability metrics

• Deploy features one-at-a-time, look for canaries in metrics

• Write fewer integration/system tests

	Slide 1: CI and Deployment
	Slide 2: Administrivia
	Slide 3
	Slide 4
	Slide 5: Review: Continuous Integration
	Slide 6: CI/CD Pipeline overview
	Slide 7: History of CI
	Slide 8: Observation
	Slide 12: Agile values fast quality feedback loops
	Slide 13: Example: Some bugs slip through testing, even in highly-regulated industries
	Slide 14: CI is triggered by commits, pull requests, and other actions
	Slide 16: Automating Feedback Loops is Powerful
	Slide 17: Attributes of effective CI processes
	Slide 18: Effective CI processes are run often enough to reduce debugging effort
	Slide 19: Effective CI processes allocate enough resources to mitigate flaky tests
	Slide 20: CI in practice at Google
	Slide 21: How can we continuously update our software in production?
	Slide 22: Cloud Computing enables CD
	Slide 23: Cloud Computing/Deployment refresher
	Slide 24: Many apps rely on common infrastructure
	Slide 25: What parts of this infrastructure can be shared across different clients?
	Slide 26: What is the infrastructure that needs to be shared?
	Slide 27: Shared infrastructure analogy: Pizza
	Slide 28: Multi-Tenancy creates economies of scale
	Slide 29: Cloud infrastructure scales elastically
	Slide 30: Cloud services gives on-demand access to infrastructure, “as a service”
	Slide 31: Infrastructure as a Service: Virtual Machines
	Slide 32: Let’s look more closely at this software stack
	Slide 33: The operating system allows several apps to share the underlying hardware
	Slide 34: A virtual machine allows shared hardware
	Slide 35: Virtual Machines facilitate multi-tenancy
	Slide 36: Virtual Machines to Containers
	Slide 37: Containers run layered images, reducing storage space
	Slide 38: Containers run layered images, reducing storage space
	Slide 39: A container contains your apps and all their dependencies
	Slide 40: A container contains your apps and all their dependencies
	Slide 41: XaaS: Containers as a Service
	Slide 42: Docker is the prevailing container platform
	Slide 43
	Slide 44: Tradeoffs between VMs and Containers
	Slide 45: Platform-as-a-Service: vendor supplies OS + middleware
	Slide 46: PaaS is often the simplest choice for app deployment
	Slide 47: PaaS in the style of Heroku runs containers
	Slide 48: How to deploy web apps?
	Slide 49: Self-managed vs Vendor-managed Infrastructure
	Slide 50: Cloud Infrastructure is best for variable workloads
	Slide 51: Public clouds are not the only option
	Slide 52: Cloud enables Continuous Delivery
	Slide 53: Continuous Delivery
	Slide 54: Motivating scenario: Failed Deployment at Knight Capital
	Slide 55: What could Knight capital have done better?
	Slide 56: Continuous Delivery != Immediate Delivery
	Slide 57: Split Deployments Mitigate Risk
	Slide 58: Continuous Delivery Leverages Relies on Staging Environments
	Slide 59: Continuous Delivery Tools
	Slide 62: Continuous Delivery Relies on Monitoring
	Slide 63: Tools for Monitoring Deployments
	Slide 64: Monitoring can help identify operational issues
	Slide 65: Continuous Delivery Tools Take Automated Actions
	Slide 66: From Monitoring to Observability
	Slide 67: New Tools allow Observability inside of Apps, Too
	Slide 68: Monitoring Services Take Automated Actions
	Slide 69: Beware of Metrics
	Slide 70: Deployment Example: Facebook.com
	Slide 71: Deployment Example
	Slide 72: Deployment Example
	Slide 73: Compare Continuous Delivery and TDD

