Shifting Left
with Static Analysis

17-313: Foundations of Software Engineering
https://cmu-313.github.io

Michael Hilton and Chris Timperley
Fall 2025

Software and Societal Carnegie
S3D <ems veparamen lon_

https://cmu-313.github.io/
https://cmu-313.github.io/
https://cmu-313.github.io/

Administrivia

- “a Welcome back!
 Project 3A due on Thursday
 deploy your NodeBB to your team's assigned VM

e identify and integrate N static/dynamic analysis tools
« drop a message on #technicalsupport if you're having deployment issues

* some teams received an email with the wrong IP address; if you can’t ping

your server, this is probably you

Software and Societal g[all'lnegle
Systems Department ellon
Universi

Smoking Section

. Last full row

DESIGNATED
SMOKING
AREA

Softwa
4 Systems Dep tttttt

Learning Goals

« Understand static vs. dynamic analysis

« Recognize the strengths and limitations of static analysis

« Understand how static analysis is used to shift left and build
systems faster and more confidently

« Explore techniques from linters to deep analyzers

Software and Societal Carnegle
Systems Department z .

What are Program Analysis Tools?

S35

Software and Societal

Systems Department

Static Analysis

Dynamic Analysis

src/controllers/accounts/posts.js (5

136
137
138
139
140
141

142

postsController.getBookmarks = async function (req, res, next) {
await getPostsFromUserSet('account/bookmarks', req, res, © next);

This function expects 3 arguments, but 4 were provided.

b

postsController.getPosts = async function (req, res, next) {
await getPostsFromUserSet('account/posts', req, res, next);

b

COVERALLS

A0 % * 2

66 Auth.reloadRoutes = async function (params) {

67 loginstrategies. length =
68 const { router } = params;

69

70 /

7 if (pl hooks. hasListeners(rideLogin')) {

7 winston.warn(* [authentication] Login override detected, skipping l

Togin strategy.");

7 plugins. hooks. fire('action:auth.overrideLogin');
74) else {
75 passport.use(new passportLocal({ passReqToCallback: true },

controllers.authentication. locallogin));

76 ¥

7

78 / HTTP bearer auth

79 passport.use('core.api’, new BearerStrategy({}, Auth.verifyToken));
8

81 / 1onal logins via SSO plug

82 try {

8 loginstrategies = await plugins.hooks. fire('filter:auth. init',

loginstrategies);

84 } catch (err) {

8 winston. error(* [authentication] ${err.stack}');
86 i

87 loginstrategies = loginstrategies || [1;

88 loginStrategies. forEach((strategy) => {

Carnegie

What static analysis can and cannot do

Type-checking is well established
« set of data types taken by variables at any point
« can be used to prevent type errors (e.g., Java) or warn about potential type errors (e.g., Python)

Checking for problematic patterns in syntax is easy and fast
* isthere a comparison of two Java strings using ==
» isthere an array access "a[i] without an enclosing bounds check for "i"?

Reasoning about termination is impossible in general (halting problem)

Reasoning about exact values is hard, but conservative analysis via abstraction is possible
 isthe bounds check before "a[i]” guaranteeing that "i" is within bounds?
« can the divisor ever take on a zero value? be prepared for “MAYBE"

Verifying advanced properties is possible but expensive
» Cl-based static analysis usually over-approximates conservatively

Software and Societal Carnegle
Systems Department Mellon

Universi

The Bad News: Rice’s Theorem

Every static analysis is necessarily
incomplete, unsound, undecidable, or a

combination thereof

“Any nontrivial property about the language
recognized by a Turing machine is undecidable.”

Henry Gordon Rice, 1953

Carnegie

Software and Soc tI
3DSytm s Depar tm

Static Analysis is well suited to detecting
certain kinds of defect

 Security: Buffer overruns, improperly validated input ...
- Memory safety: Null dereference, uninitialized data ...
* Resource leaks: Memory, OS resources ...

* These often rely on specific conditions and take place over long
horizons (e.g., leaks). Difficult to find using traditional testing!

Carnegie

Software and Soc tI
3DSytm s Depar tm

Static analysis has many applications

* Find bugs

 Refactor code

« Keep your code stylish!
* |[dentify code smells

« Measure quality
* Find usability and accessibility issues

» [dentify bottlenecks and improve performance

Software and Societal Carnegie
S3D <ems veparamen lon_

Activity: Analyze the Python program statically

def n2s(n: int, b: int):

1f n <= 0: return '0'

r =
while

u =

n > 0:
n % b

1f u >= 10:

u

n =

r =

= chr(ord('A') + u-10)
n// Db
str(u) + r

return r

Software and Societal
Systems Department

What is the type of variable 'u'?

Will the variable 'u” be a negative number?
Will this function always return a value?
Will the program divide by zero?

Will the returned value ever contain a

minus sign -'?

Carnegie
Mellon
Universi

Activity: Analyze the Python program dynamically

def n2s(n: int, b: int):
1f n <= 0: return '0'

r =

while n > 0:

u=n=%%>hb
it u >= 10:

u = chr(ord('A") + u-10)
n=n}//Db

r = str(u) + r
return r

print(n2s(12, 10))

Software and Societal
Systems Department

What is the type of variable 'u” during
program execution?

Did the variable 'u’ ever contain a
negative number?

For how many iterations did the while
loop execute?

Was there ever be a division by zero?

Did the returned value ever contain a
minus sign ‘-'?

Carnegie
Mellon
Universi

Dynamic analysis reasons about executions

* Tells you properties of the program that were definitely observed

« Code coverage

« Performance profiling
» Type profiling

» Testing

* |[n practice, implemented by program instrumentation

« Think “Automated logging”
« Slows down execution speed by a small amount

Carnegie

Software and Societal Viell
Systems Department ellon
Universi

Static Analysis vs. Dynamic Analysis

» Requires only source code « Requires successful build + test inputs

« Conservatively reasons about all possible » Observes individual executions

inputs and program paths
« Reported problems are real, as observed by

« Reported warnings may contain false a witness input
positives
« Can only report problems that are seen.
« Can report all warnings of a particular class Highly dependent on test inputs. Subject to
of problems false negatives

« Advanced techniques like formal verification Advanced techniques like symbolic

can prove certain complex properties, but execution can prove certain complex
rarely run in Cl due to cost properties, but rarely run in Cl due to cost
Software and Societal Carnegie
33D Systems Department Mellon

Universi

Static Analysis

33D Software and Societal Carnegie
Systems Department Mellon
Universi

Static Analysis is Key to Shifting Left

* [ssues are cheaper and faster to rectity when discovered early
- = Find and prevent issues as early as possible

Attention
to

Quality Sp/i\ft éert Tr%cljjigﬁtr;cl
ode

Model

Plan Develop Test Deploy Monitor
& Design & Build & Release & Analyze

Software and Societal Carnegle
Systems Department Me!lon :
Universi

Static Analysis is a key part of Continuous
Integration

© B @

REVIEW STAGING PRODUCTION

X (@ RO

® ®O—0— 000 @ ® L J
‘ BUILD UNIT |NTEGRATION

TESTS TESTS
& CD PIPELINE

Cl PIPELINE

RELATED CODE

D Software and Societal g/[alﬁrlegle
Systems Department elion
Universi

Reflecting on NodeBB

 Did your team accidentally merge breaking changes?
 e.g2., missing semi-colons, incorrect variable names, ...

« How did it sneak past review?
 you probably weren't expecting to look for small mistakes!
 you didn't get much support from the Cl setup
« you might have been distracted by the flaky tests!

user.create] Validation email failed to send

r: [[error:sendmail-not-found]]
t Emailer.sendToEmail (/home/runner/work/NodeBB.ai/NodeBB.ai/src/emailer.js:17:2620)
ocess.processTicksAndRejections (node:internal/process/task_queues:105:5)
c Emailer.send (/home/runner/work/NodeBB.ai/NodeBB.ai/src/emailer.js:16:197)

Software and Societal g/[all'lnegle
Systems Department elion
Universi

Static analysis is integrated in your ID

0
D
O
5
U

EXTENS'ONS MARKETPLACE O b c++ Cppcoreguidelines.cpp

il // To enable only C++ Core Guidelines checks
2 // go to Settings/Preferences | Editor | Inspections | C/C++ | Clang-Tidy

I|nt — v B // and provide: -%,cppcoreguidelines— in options
= 4
5 void fill_pointer(intx arr, const int num) {
6 for(ipt i = 0; i < num; ++i) {
. 7 arrlil = o;
\
Es ESLInt O 21ms 9 | Do not use pointer arithmetic
{Lint} Integrates ESLint JavaScript into VS... 10 e T e
A 2 Microsoft 2 int arr(3] = {1,2,3}
? & B Sl =6 e Ml Cross-site Scripting (XSS)

5 high | © medium vul y

ch++ Advanced Lint D 674K * 3 ‘% \{/oid cast_away_const(const int& magic_num))
Lintt An advanced, modern, static analysi... - SR ol I
Joseph Benden Install

110w
9 high | 21 medium | 25 low
critical | 66 high | 56 medium | 142 low

Software and Societal
Systems Department

Static analysis used to be an academic
amusement. Now it's heavily commercialized.

Meska(place./ SearchTesults g))) Sonar Products v Why Sonar v Pricing Developers v Resources v Company v Q News
r——— Snyk Secures $150M, Snags $1B
- Froee ——— Valuation

Actions Security
Buld on your workllow with apps that Integrate with GitHub.
Open issues 3 Share thi tick
T 200 Sydney Sawaya | Assoclate Editor =G
sults fitered by | Aps | x
Categories ———————— January 21, 2020 1:12 PM 9 o @ 0 e
- Relabiy
API management o Mo WhiteSource Bolt © (m Y P u—)
<> agle pojectm s the entire uinera i 47 opentssues 3
Chat on GitHub
g °
Code quality Maintainability
Crowdin @ Slack + GitHub @
Code review & ge ation for your projects nnect your code without leaving Slack J 389 openissies A
Continuous integration N
. BackHub @ GitLocalize © Acceptedssues
Dependency management Rel Hub repository P, S n 1 Continuous Localization for GitHub projects Ve r I 0 ®
Deployment mir

IDEs Codacy @ § 0 Code Climate ©
Ll A code revi Sonar helps development teams fuel Al-enabled Coverage

Learning) . .

development and build trust into every line of code. 0.0% @)

Flaptastic © On 15K s tocover
ge o
e i cisctie any Get started Contact sales o
Monitoring st 10.9% D
on eakines.

Project management
updates done right

DeepScan @ Depfu @
Advanced s itom Automat
ding runtime o

Publishing

Snyk, a developer-focused security startup that and Identifies vulnerabilities In open source applications,
announced a $150 million Serles C funding round today. This brings the company’s total investment to

GitHub acquil'es COde al‘laly5is tOOI semmle TRUSTED BY OVER 7M DEVELOPERS AND 400K ORGANIZATIONS $250 million alongside reports that put the company'’s valuation at more than $1 billion.

Frederic Lardinois @fredericl / 1:30 pm EDT * Se nber 18,2019

NNSN 2% Microsoft eb.

Johnsong&Johnson BARCLAYS @Pﬁzer

GitHub

sonarqube\\\ sny Copilot

+ Semmle

Software and Societal Carnegle
Systems Department z .

There are Iots of static analysis tools'

@ JSpecify o .

A I rewewdog \\\
RuboCop /) Cover1ty sonarqQube
{mo}

@ sqgale @: my[py] .
snyk @ESLInt

qza[/
=’Java

REY

ADGE

CHECKER

framework

What makes a good static analysis tool?

e Static analysis should be fast

« Don't hold up development velocity
« This becomes more important as code scales

« Static analysis should report few false positives
« Or developers will start to ignore warnings and alerts, and quality will decline

» Static analysis should be continuous

« Should be part of your continuous integration pipeline
« Even better: don’t analyze the whole codebase; just the changes

« Static analysis should be informative

« Messages that help the developer to quickly locate and address the issue
« |deally, it should suggest or automatically apply fixes

. Carnegie
33D Software and Societal https://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext J

Systems Department

Static Analysis: Broad Classification

* Formatting Linters
 Shallow syntax analysis for enforcing code styles and formatting

 Pattern-Based Linters (“bug detectors”)

« Simple syntax or API-based rules for identifying common programming mistakes or
violations of best practice

» Type-Based Analysis
« Check conformance to user-defined types
« Types can be complex (e.g., “Nullable”)

 Data-Flow Analysis / Abstract Interpretation (Value Analysis)

« Deep program analysis to find complex error conditions
« e.g., "can array index be out of bounds?”

Software and Societal g[all'lnegle
Systems Department ellon
Universi

Today

* Formatting Linters

 Pattern-Based Linters

» Type-Based Analysis

* Value Analysis (Data Flow & Abstract Interpretation)

 Analysis for Everything Else

Software and Societal Carnegle
Systems Department 2 .

Today

* Formatting Linters

Software and Societal g[all'lnegle
Systems Department ellon
Universi

Linters: Cheap, fast, and lightweight static
source analysis

Software and Soc t | https://www.perforce.com/blog/qac/what-lint-code-and-why-linting-important Carnegle
Systems D epar tm

% Formatting Linters use shallow static
analysis to enforce formatting rules

« Ensure proper indentation
 Naming convention

* Line sizes

* Class nesting

« Documenting public functions

« Parenthesis around expressions
* What else?

Software and Soc t | Carnegie
S sisieme oparime lon

Style guidelines help to facilitate communication

Python

Style Guidelines

This document collects the emerging principles, conventions, abstractions, and best practices for writing

e python’

Since Rust is evolving at a rapid pace, these guidelines are preliminary. The hope is that writing them
down explicitly will help drive discussion, consensus and adoption.

README Code of conduct MIT license Security

About Downloads Documentation Community Success Stories ‘Whenever feasible, guidelines provide specific cxamples from Rusts standard libarics.

Guideline statuses
Python » Python Developer's Guide) PEP Index » PEP 8 - Style Guide for Python Code
JetBrains. Share, leam, and vin pizes! The

Every guideline has a status:

survey should only take you about 10 min, Title: i EnEC e Guideline stabilization

10 complete. surveys etrans. 1) N N

python. brize D RtpytionoEa by P/ borois N K One purpose of these guidelines is to reach decisions on a number of cross-cutting API and stylistic

gmail.com> choices. Discussion and development of the guidelines wil happen primarily on hitp:/discuss.rus

Airbnb JavaScript Style Guide() {

© [FIXME]: Marks places where there is more work to be done. In some cases, that just means go

PEP 8 -- Style Guide for Python Code o e s

‘o [FIXME #NNNNNJ: Like [FIXME], but links to the issue tracker

A mostly reasonable approach to JavaScript
We encourage you to contibute o our

community's knowiedge by taking partin
he offcial Python Survey 2020, orgarized

' © [RFC #NNNNJ: Marks accepted guidelines, linking to the rust-lang RFC establishing them.
in parinership between @ThePSF & PEP: 8 N

downloads [15M/month| downloads [28M/month | gitter [join chat

lang.orz/, using the Guidelines c.

y. Discussion can also occur on the guidelines issue tracker

Python Developers S... SEILE Paiwe

Eh Join and conribute to . Type: a— Guidelines that are under development or discussion will be marked with the staws [FIXMEI, with a
sun ins.com Tink to the issu tracker when appropriate.
Created: 05-Jul-2001

Once a concrete guideline is ready to be proposed, it should be filed as an FIXME: needs RFC. If the

This guide is available in other languages too. See

r Style Guides

3

Post- 05-Jul-2001, 01-Aug-2013 RFC is accepted. the official guidelines will be updated to match, and will include the tag [RFC

#NNNN] linking to the RFC documen

a Python Software Foundation & History:] g to .

eper

Hey Pyhnista,haveyou arecy oned What's in this document

the Python Developers Survey 20207

sunveys etorai o . “This document is broken into four parts:
 Style provides a set of rules governing naming conventions, whitespace, and other stylistic issues.

Outhan Rovatnnare & -~ - Introduction
3 . ® Guidelines by Rust feature places the focus on each of Rust’s features, starting from expressions,
Embed View on Triter g AFoolish Gonsistencys the Hobgoblin ofLittic Winds and working the way out toward erates, dispensing guidelines relevant to cach. THE ESSENTIAL GUIDE

+ Codelayout for Writers, Editors, and Publis Table of Contents

» Topical guidelines and patterns. The rest of the document proceeds by cross-cutting topic, starting
with Own

= Indentation

« Tabsor Spaces?

The PSF

© APIs for a changing Rust di

interact with the pre-1.0 library stabilization process

+ Maximum Line Length usses the forward-compatibility hazards, especially those that

The Python Software Foundation

= Should a Line Break Before or After a Binary Operator?

Guidelines are inherently opinionated, but consistency is the important point.
Agree to a set of conventions and stick to them.

https://www.chicagomanualofstyle.org/ | https://google.github.io/styleguide/ | https://www.python.org/dev/peps/pep-0008 | https://github.com/airbnb/javascript

Software and Societal Carnegle

Systems Department

https://www.chicagomanualofstyle.org/
https://google.github.io/styleguide/
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008

Use linters to enforce style guidelines

Don't rely on manual inspection during code review! Even better,
automatically apply the tool on save or commit.

83D Software and Societal https://checkstyle.sourceforge.io Carnegle

Systems Department

Use linters to improve maintainability

* Why? We spend more time reading code than writing it
« Various estimates of the exact %, some as high as 80%

« Code is ownership is usually shared
* The original owner of some code may move on

« Code conventions make it easier for other developers to quickly
understand your code

Software and Societal Carnegle
Systems Department z .

Today

 Pattern-Based Linters

Software and Societal Carnegle
Systems Department Me!lon :
Universi

Pattern-Based Analysis evaluates
program syntax against a set of rules

« Matches syntactic patterns (via abstract syntax tree) to identify
likely mistakes and APl misuses

« Good at finding use of disallowed and deprecated APIs, dangerous
language features, and obvious mistakes

* Provides fast, best effort bug finding when used appropriately
« Can only find issues for which there is a corresponding rule / pattern
« Some issues may incorrectly trigger in benign cases (false positives)
 Saves time during code review by checking for common mistakes

Carnegie

Software and Societal
Systems Department

Pattern-Based Analysis for JS/TS (@) estint

 De facto standard for pattern-based checks in JavaScript and
TypeScript. Integrates with editors (e.g., VS Code) out of the box
* “npm run lint” usually involves ESLint

* Provides rules that check for mistakes and enforce best practices
 Correctness Rules (“Possible Problems”) look for logic errors
 Suggestion Rules enforce best practices and clean code

« Automatically fixes the code for certain rule violations (- - f1ix)
by applying a deterministic, syntactic rewrite rule (no LLMs!)

Carnegie

Q3D s serorment https://eslint.org/docs/latest/rules/

What's the problem in this code?

setTimeout("doThing()", 100);

setinterval("x = x + 1", 1000);
setInterval(callbackStr, 500);

const f = new Function("a", "b", "return a + b");

Correctness Rule: no-implied-eval

* [dentifies implicit evaluation of strings as code
« equivalent to eval — a major security and reliability risk!
« stringified code escapes static analysis; may crash or cause problems
* user-provided strings open up the potential for remote code execution

// Bad: string evaluated as code // Good: pass functions/closures
setTimeout("doThing()", 100); setTimeout(() => doThing(), 100);
setinterval("x = x + 1", 1000); setinterval(() =>{x=x+1; }, 1000);
const f = new Function("a", "b", "return a + b"); function add(a, b) { return a + b; }

Software and Societal Carnegle
Systems Department s://eslint.org/docs/latest/rules/no-implied-eva 1

https://eslint.org/docs/latest/rules/no-implied-eval
https://eslint.org/docs/latest/rules/no-implied-eval
https://eslint.org/docs/latest/rules/no-implied-eval
https://eslint.org/docs/latest/rules/no-implied-eval
https://eslint.org/docs/latest/rules/no-implied-eval

Suggested Rule: (no) “Yoda”

 Yoda condition flip operands
« Pro Yoda: it's impossible to accidentally use “="
« Anti Yoda: it makes the code harder to read

// X Yoda style
if (“red” === color) {/* ... */}

// W@ Preferred
if (color === “red”) {/* ... */ }

G .
SsD corware and Socetal https://eslint.org/docs/latest/rules/yoda aljnegl.e

Systems Dp tm

ESLint can be extended with plugins

 To find more code quality issues
« depend, Sonar]S, Unicorn, ...

Awesome ESLint B swesome

 To scan different languages
* SQL, HTML, JSON, YAML, ...

* To identify issues with frameworks
« React, Angular, Vue, ...

 To identify issues with libraries
]SDoc, jQuery, Require]s, ...

Software and Societal -/ /gi . : _ecli Carnegle
Systems Department z .

https://github.com/es-tooling/eslint-plugin-depend
https://github.com/es-tooling/eslint-plugin-depend
https://github.com/SonarSource/SonarJS/blob/master/packages/jsts/src/rules/README.md
https://github.com/SonarSource/SonarJS/blob/master/packages/jsts/src/rules/README.md
https://github.com/gajus/eslint-plugin-sql
https://github.com/gajus/eslint-plugin-sql
https://github.com/yeonjuan/html-eslint
https://github.com/azeemba/eslint-plugin-json
https://github.com/ota-meshi/eslint-plugin-yml
https://github.com/jsx-eslint/eslint-plugin-react
https://github.com/jsx-eslint/eslint-plugin-react
https://github.com/angular-eslint/angular-eslint
https://github.com/vuejs/eslint-plugin-vue
https://github.com/gajus/eslint-plugin-jsdoc
https://github.com/gajus/eslint-plugin-jsdoc
https://github.com/wikimedia/eslint-plugin-no-jquery
https://github.com/cvisco/eslint-plugin-requirejs
https://github.com/dustinspecker/awesome-eslint
https://github.com/dustinspecker/awesome-eslint
https://github.com/dustinspecker/awesome-eslint

Challenges with pattern-based analysis

« The analysis must produce few or (better yet) zero false positives
« Otherwise, developers won't be able to build the code!

» The analysis needs to be really fast
* |deally <100 ms
- If it takes longer, developers will become irritated and lose productivity

« Practically, this means the analysis needs to focus on “shallow” bugs rather than verifying
some complex logic spanning multiple functions/classes

« You can't just “turn on” a particular check
« Every instance where that check fails will prevent existing code from building
« There could be thousands of violations for a single check across large codebases

Carnegie

Software and Societal Viell
Systems Department ellon
Universi

Today

- Type-Based Analysis

Software and Societal g[all'lnegle
Systems Department ellon
Universi

Can you spot the bug?

// $./prog 5 helloWorld
// hello
int main(int c, char **v) { // prints first N characters of string
if (c < 3) return 1;
int n = atoi(v[1]);
char buf[8];
if (n < sizeof buf) {
memcpy (buf, v[2], n);

}
buf[n] = "\@0";
puts(buf);
}
' Carnegie
% { p T

Universi

Can you spot the bug?

// $./prog 5 helloWorld

// hello

int main(int c, char **v) { // prints first N characters of string
if (c < 3) return 1;
int n = atoi(v[1]);
char buf[8];

if (SN | // negative values are allowed
memcpy (buf, v[2],); // n is promoted to size_t; becomes huge number!
Y
buf[n] = "\@"';
puts(buf);
}
X {p Pk Nelon

Universi

Can you spot the bug?

// $./prog 5 helloWorld
// hello
int main(int c, char **v) { // prints first N characters of string
if (c < 3) return 1;
int n = atoi(v[1]);
char buf[8];
if (n < sizeof buf) {
memcpy (buf, v[2], n);

}
buflfll = "\o'; // undefined behavior for n < 0!
puts(buf);
}
oftware and Societa Carnegie
33D éygems De[()jasrtme;tI Mellon

Universi

Microsoft: 70 percent of all security bugs ~ White House urges developers to avoid C

are memory safety issues and C++, use 'memory-safe' programming
;gr;’:::::t::tef g: :rr::r::g 1sza!f;:t;/rfss.sues has been hovering at I a n gu a g e S

@ ZD m By Les Pounder published 28 February 2024
- NET The languages may pose a security risk when used in critical

Written by Catalin Cimpanu, Contributor

Feb. 11,2019 at 7:48 a.m. PT SySte m S .

Serious flaw that lurked in sudo for 9
years hands over root privileges

Flaw affecting selected sudo versions is easy for unprivileged users to exploit.

MAKE ME A SANDWICH.

WHAT? MAKE
IT YOURSELF.

SUDO MAKE ME /
A SANDWICH

OKAY . . d | :blr‘\r o : - R \ : ' 3 . .
5 W"’*“’”W -
%)y ISACERYC) S P2 t+-m-,d&&n._,.‘.‘
; o e o o ne -~

ars TECHNICA Betoix izt TR

Software and Societal g/[all'lnegle
Systems Department elion
Universi

© Languages as the first line of defense

 Idea: Prevent entire classes of bugs before runtime!

« bad programs won’t compile or fail checks; errors surface in editor / Cl
* provides strong guarantees about absence of certain bugs

- Languages provide memory safety in different ways

« Compile time (no GC): Rust. Language features (ownership, borrowing,
lifetimes) prevent memory errors in safe code

- Managed runtimes: E.g., JavaScript, Java, C#, Go. Relies on array bounds
+ garbage collection. Doesn’t allow pointer arithmetic

« C++ with discipline: RAIl & smart pointers help to reduce leaks and
eliminate use-after-free, but they are not memory safe

Software and Societal Carnegle
Systems Department Me!lon .
Universi

Can you spot the issue?

function compact(arr) {
if (orr.length > 10)
return arr.trim(o, 10)
return arr

Carnegie

SSD Software and Societal https://www.typescriptlang.org

Systems Department

https://www.typescriptlang.org/
https://www.typescriptlang.org/

Memory-safe doesn’t imply type safety

_—=> function compact(arr) {
No edi :
1tor warnings if Jorr.Jlength > 10)

1n JavaScript files return arr.trim(e, 10)
return arr

This code crashes at | }
runtime!

¢ 9

Cannot find name ‘orr

Software and Societal Carnegie
Systems Department https://www.typescriptlang.org 1 :

https://www.typescriptlang.org/
https://www.typescriptlang.org/

Memory-safe doesn’t imply type safety

THIS 1S MY
FAVORITE
LANGUAGE

- Javascript is dynamically and
loosely typed language

* Types are determined at runtime

 the same variable may hold values with
different types over time

2. Type errors only show up when you
run the code

* Uses aggressive type coercion to convert
values for compatibility

Software and Societal Carnegle
Systems Department Me!lon :
Universi

TypeScript: JavaScript with Types

« TypeScript is a strongly typed language
e errors are caught before run-time!

» TypeScript is converted (“transpiled”) to JavaScript

= function compact(arr: string[]) {
TypeScript adds if (arr.length > 10)
natural syntaX for return arr.slice(0, 10)
providing types } return arr

Software and Societal gflall.flegle
Systems Department ellon
Universi

Add Types to Existing Code via Annotations

- Add type annotations on top of the existing language

» allows you mix

/'—:
Using JSDoc to give

and match typed and untyped code -- easier to transition

// @ts—-check

> /*xx @param {any[]} arr x/ TS
function compact(arr) {

type information

/**

* JSDoc

if (arr.length > 10)

return arr.trim(e, 10) /——Now TS has found
nd a

Property 'trim' does not exist on type 'anyl[]'. bad call. Arrays
have slice, not

return arr .
Ry o trim,

by

*/

Software and Societal
Systems Department

Carnegie
Mellon
Universi

Enrich Type Systems via Annotations

« We don't need to be bound to just structural types!

« We can use annotations to layer additional semantics on top of
the base type system

* E.g., Java Checker framework provides annotations that help to target null
pointer errors, uninitialized fields, information leaks, SQL injections,
incorrect physical units, bad format strings, ...

« Can guarantee the absence of certain defect classes
 provided that code is annotated correctly

CHECKER

framework

Software and Societal g[all'lnegle
Systems Department elion

Universi

Example: Detecting null pointer exceptions

« @Nullable indicates that an // return value
expression may be null @NonNull String toString() { ... }

« @NonNull indicates that an

. // parameter
expression must never be null

int compareTo(@NonNull String other)

« Guarantees that expressions L)

annotated with @NonNull will
never evaluate to null. Forbids
other expressions from being

dereferenced

33 D Software and Societal https://checkerframework.org/manual/#nullness-annotations Carnegle

Systems Department

import org.checkerframework.checker.nullness.qual.*;

public class NullnessExampleWithWarnings {
public void example() {

@NonNuII String foo = "foo" @Nullable is applied by
Stringbar=null; " 4efault

foo = bar;
00 = ba ! Error: [assighment.type.incompatible] incompatible types in assignment.

printIn(foo.length()); found : @Initialized @Nullable String
required: @Unknownlnitialization @NonNull String

Carnegie

Software and Societal Viell
Systems Department ellon
Universi

import org.checkerframework.checker.nullness.qual.*;

public class NullnessExampleWithWarnings {
public void example() {
@NonNull String foo = "foo";
String bar = null; // @Nullahla

bar is refined to

if (bar = null) { —, @NonNull
foo = bar;
}
printin(foo.length());
}
}
S3D é)c/):?évr?]rse[?en;)jasr?r;l:?cl g[%ll'f(lﬁlgie

Universi

Another example: Units Checker

« Guarantees operations are physically meaningful and use same
kind and units

e Kind annotations

« @Acceleration, @Angle, @Area, @Current, @Length, @Luminance, @Mass,
@Speed, @Substance, @Temperature, @Time

* S| unit annotation 0@@
« @m, @km, @mm, @kg, @mPERs, @mPERs2, @radians, I =

@degrees, @A, ... a S

83 D Software and Societal https://www.nist.gov/pml/weights-and-measures/metric-si/si-units Cal'ﬂegle

Systems Department

171 O LRI PO IS A T P T

" MeTRIC, ENGLSH, WHATEVER..."

Remember the Mars Climate Orbiter incident from 1999?

y sl M SEH lE Blog Product v Solutions Learning v Public Projects Case Studies Careers Pricing LogIn Sign Up

When NASA Lost a Spacecraft Due to

a Metric Math Mistake

WRITTENBY ~ UPDATED ON ME
Ajay Harish March 10th, 2020 11 Minutes

Blog > CAE Hub > When NASA Lost a Spacecraft Due to a Metric Math Mistake

In September of 1999, after almost 10 months of travel to Mars, the Mars Climate Orbiter burned
and broke into pieces. On a day when NASA engineers were expecting to celebrate, the ground
reality turned out to be completely different, all because someone failed to use the right units,
i.e., the metric units! The Scientific American Space Lab made a brief but interesting video on this

very topic.

NASA'S LOST SPACECRAFT

The Metric System and NASA's Mars Climate Orbiter

The Mars Climate Orbiter, built at a cost of $125 million, was a 338-kilogram robotic space probe
launched by NASA on December 11, 1998 to study the Martian climate, Martian atmosphere, and
surface changes. In addition, its function was to act as the communications relay in the Mars
Surveyor ‘98 program for the Mars Polar Lander. The navigation team at the Jet Propulsion

Laboratory (JPL) used the metric system of millimeters and meters in its calculations, while

NASA’s Mars Climate Orbiter (cost of $327 million) was lost because of a discrepancy
between use of metric unit Newtons and imperial measure Pound-force.

33 D Software and Societal https://www.simscale.com/blog/2017/12/nasa-mars-climate-orbiter-metric

Systems Department

Carnegie

import static org.checkerframework.checker.units.UnitsTools.m;
import static org.checkerframework.checker.units.UnitsTools.mPERs;
import static org.checkerframework.checker.units.UnitsTools.s;

void demo() {
@mint x;
X=5*m;

@m int meters =5 * m;
@s int seconds =2 * s;

@mPERs int speed = meters / seconds;
@m int foo = meters + seconds;
@s int bar = seconds - meters;

Software and Societal Carnegle
Systems Department 2 .

import static org.checkerframework.checker.units.UnitsTools.m;
import static org.checkerframework.checker.units.UnitsTools.mPERs;
import static org.checkerframework.checker.units.UnitsTools.s;

void demo() { @m indicates that x represents meters
@m intx; —

X=5%*m;

__To assign a unit, multiply appropriate
@m int meters =5 * m; unit constant from UnitTools
@s int seconds =2 * s;

@mPERs int speed = meters / seconds;
@m int foo = meters + seconds;
@s int bar = seconds - meters;

Software and Societal g[all'lnegle
Systems Department ellon
Universi

Does this program compile?

import static org.checkerframework.checker.units.UnitsTools.m;
import static org.checkerframework.checker.units.UnitsTools.mPERs;
import static org.checkerframework.checker.units.UnitsTools.s;

void demo() { @m indicates that x represents meters
@m intx; —

X=5%*m;

To assign a unit, multiply appropriate
@m int meters =5 * m; unit constant from UnitTools
@s int seconds =2 * s;

@mPERs int speed = meters / seconds;
@m int foo = meters + seconds;
@s int bar = seconds - meters;

Software and Societal gflall.flegle
Systems Department ellon
Universi

Does this program compile? No.

import static org.checkerframework.checker.units.UnitsTools.m;
import static org.checkerframework.checker.units.UnitsTools.mPERs;
import static org.checkerframework.checker.units.UnitsTools.s;

void demo() {
@mint x;
X=5*m;

@m int meters =5 * m;
@s int seconds =2 * s;

@mPERs int speed = meters / seconds;
@m int foo = meters + seconds;
@s int bar = seconds - meters;

Software and Societal
Systems Department

Addition and subtraction between
meters and seconds is physically
meaningless

Carnegie

L“ lquid
Refinement Types = Jég\//a

« We want our types to be stricter and restrict not only based on
structure but also on values

« we enforce logical predicates over expressions
- variables, arguments, return values, fields,

. . . @StateSet({"emptyEmail", "receiverSet", "senderSet", "bodySet"
@Refinement ("positive > 0" public class Email

int pOSltlve @StateRefinement(to = "emptyEmail(this)"
pOSlt ive 50 public Email

1 4 1 @StateRefinement (from = "emptyEmail(this)", to = "senderSet(this)"
pOSlt 1ve 1 public void from(String s

@StateRefinement (from = "(senderSet(this)) || (receiverSet(this))"
to "receiverSet(this)"

@Refinement 1] >= 0 && <= 100.. public void to(String s

int percentage @StateRefinement(from = "receiverSet(this)", to = "receiverSet(this)"
public void subject(String s

percentage = 50 @StateRefinement (from- "receiverSet(this)", to - "bodySet(this)"
tage 10 public void body(String s
percen

Carnegie

53D 2;32;?52553;‘53' https://github.com/CatarinaGamboa/liquidjava

Limitations of Type-Based Static Analysis

« Can only analyze code that is annotated
« Requires that dependent libraries are also annotated
 Can be tricky to retrofit annotations into existing codebases

« Only considers the signature and annotations of methods
« Doesn't look at the implementation of methods that are being called

- Can't handle dynamically generated code well
« Examples: Spring Framework, Templates

« Can produce false positives!
« Byproduct of necessary approximations

Carnegie

Software and Societal Mell
Systems Department elion
Universi

Today

 Value Analysis (Data Flow & Abstract Interpretation)

Software and Societal gflall.flegle
Systems Department ellon
Universi

Dataflow and Taint Analysis =

 Tracks how values move through a program (assignments,
branches, function calls)
« Can data from an untrusted source reach a sink along a feasible path?
« Check if tainted data is sanitized before reaching sink

 Useful for finding security issues
- command and SQL injection; cross-site scripting; unsafe deserialization; ...

 requires models of frameworks, libraries, and sanitizers; if these models
are missing, results will contain false positives/negatives

« struggles with aliasing and dynamic features (e.g., eval, reflection)

Carnegie

SSD Software and Societal https://codeql.github.com

Systems Department

Abstract Interpretation / Value Analysis

- Computes a sound over-approximations of
o .
program behavior in terms of an abstract domain e

« Goal: determine if a property holds for all executions

i, n

« e.g,"y/X"is "x" ever 0?7
 abstract domain captures only the values/states M7

relevant to our property of interest
- e.g.,"is zero?" /\

« Mostly restricted to embedded, safety critical code
 not suited to dynamic and reflective languages \/
« difficult to scale — explores all possible paths! L

Software Analyzers

Software and Societal g[all'lnegle
Systems Department ellon
Universi

Today

« Analysis for Everything Else

Software and Societal g[all'lnegle
Systems Department ellon
Universi

Static Analysis for Everything Else

- Static analysis isn’t just for source code
- If it's machine readable, we can statically analyze it!

YA
Q 0 0 kubtes ML

O{JSON} Jenkins ‘ ' S,Spyvfy%ng;\neTEEAn
&> docker

aaaaaaaa

"’ Terraform

SEiETE e ot Carnegie
S0 ssiemsocparime lon_

Dependencies & Supply Chain

 Analysis can find dependencies with known vulnerabilities
(including transitive deps), malicious packages (e.g., typosquats),
and incompatible licenses by scanning manifests and images

vm2 3.9.19 Direct ® 5 critical ~

npm - package-lock.json - Detected automatically

@babel/traverse 7.22.4 Transitive ® 3 moderate ~

npm - package-lock.json - Detected automatically

@babel/cli »7.17.10 Transitive

npm - package.json - Detected automatically

browserify-sign 4.2.1 Transitive

npm - package-lock.json - Detected automatically

Software and Societal
Systems Department

https://github.com/security/advanced-security/software-supply-chain
https://github.com/security/advanced-security/software-supply-chain
https://github.com/security/advanced-security/software-supply-chain
https://github.com/security/advanced-security/software-supply-chain
https://github.com/security/advanced-security/software-supply-chain
https://github.com/security/advanced-security/software-supply-chain
https://github.com/security/advanced-security/software-supply-chain
https://github.com/security/advanced-security/software-supply-chain
https://github.com/security/advanced-security/software-supply-chain

< Back to Blog

Shai-Hulud: Self-Replicating
Worm Compromises 500+
NPM Packages

The Shai-Hulud worm has infected over 500 NPM packages including
@ctrl/tinycolor in an unprecedented self-propagating supply chain attack. The
malware harvests AWS/GCP/Azure credentials using TruffleHog, establishes
persistence through GitHub Actions backdoors, and automatically spreads to
other maintainer packages - marking the first successful worm attack in the
NPM ecosystem.

Ashish Kurmi
September 15, 2025

Software and Societal
Systems Department

1) CRITICAL SUPPLY CHAIN SECURITY ALERT &4

mm Package Compromise

'r"L|/ | ¢ HIJ

3up§Iy Chaln Aﬁack

Self-propagating malware infects 40+ NPM packages

40+ 2M+ Critical

PACKAGES INFECTED WEEKLY DOWNLOADS SEVERITY LEVEL

Carnegie
Mellon
University

https://www.stepsecurity.io/blog/ctrl-tinycolor-and-40-npm-packages-compromised
https://www.stepsecurity.io/blog/ctrl-tinycolor-and-40-npm-packages-compromised
https://www.stepsecurity.io/blog/ctrl-tinycolor-and-40-npm-packages-compromised
https://www.stepsecurity.io/blog/ctrl-tinycolor-and-40-npm-packages-compromised
https://www.stepsecurity.io/blog/ctrl-tinycolor-and-40-npm-packages-compromised
https://www.stepsecurity.io/blog/ctrl-tinycolor-and-40-npm-packages-compromised
https://www.stepsecurity.io/blog/ctrl-tinycolor-and-40-npm-packages-compromised
https://www.stepsecurity.io/blog/ctrl-tinycolor-and-40-npm-packages-compromised
https://www.stepsecurity.io/blog/ctrl-tinycolor-and-40-npm-packages-compromised
https://www.stepsecurity.io/blog/ctrl-tinycolor-and-40-npm-packages-compromised
https://www.stepsecurity.io/blog/ctrl-tinycolor-and-40-npm-packages-compromised
https://www.stepsecurity.io/blog/ctrl-tinycolor-and-40-npm-packages-compromised
https://www.stepsecurity.io/blog/ctrl-tinycolor-and-40-npm-packages-compromised
https://www.stepsecurity.io/blog/ctrl-tinycolor-and-40-npm-packages-compromised
https://www.stepsecurity.io/blog/ctrl-tinycolor-and-40-npm-packages-compromised

Starting at September 8th, 13:16 UTC, our Aikido intel feed alerted us to a series packages

being pushed to npm, which appeared to contains malicious code. These were 18 very popular ‘A How the Malware Works (Step by Step)
packages, . . .
1. Injects itself into the browser
» backslash (0.26m downloads per week) K o Hooks core functions like fetch, xMLHttpRequest , @and wallet APIS (window.ethereun , Solana,
| etc.).
. |

¢ chalk-template (3.9m downloads per week)

SRR L | have no access to my account at the moment. It's in npm's

o Ensures it can intercept both web traffic and wallet activity.

2. Watches for sensitive data

¢ has-ansi (12.1m downloads per week’ - -
(P) ha ndS for now. Slnd re haS already bOOted me Oﬁ and pUbIlShed o Scans network responses and transaction payloads for anything that looks like a wallet
e simple-swizzle (26.26m downloads per week) over chalk address or transfer.
e color-string (27.48m downloads per week)) o Recognizes multiple formats across Ethereum, Bitcoin, Solana, Tron, Litecoin, and
Bitcoin Cash.

e error-ex (4717m downloads per week)

+ color-name (19171m downloads per week) debug and color/color-string/color-convert are still affected, .
« is-arrayish (73.8m downloads per week) along with ma ny others I'm sure. o Replaces the legitimate destination with an attacker-controlled address.

o Uses “lookalike” addresses (via string-matching) to make swaps less obvious.

. Rewrites the targets

¢ slice-ansi (59.8m downloads per week)

* color-convert (193.5m downloads per week) Email came from SUppOFt [at] npmjs [d Ot] help 4. Hijacks transactions before they’re signed
o wrap-ansi (197.99m downloads per week) o Alters Ethereum and Solana transaction parameters (e.g., recipients, approvals,
allowances).

. i-

ansi-regex (243.64m downloads per week) o Even if the Ul looks correct, the signed transaction routes funds to the attacker.
e supports-color (287.1m downloads per week) /is-arrayish /index.js
. i 5. Stays stealthy
7 SRR R ol B « Back e reske o If a crypto wallet is detected, it avoids obvious swaps in the Ul to reduce suspicion.
* chalk (299.99m downloads per week) o Keeps silent hooks running in the background to capture and alter real transactions.

1 module.exports = function isArrayish(obj) {

¢ debug (357.6m downloads per week)

if (lobj || typeof obj === 'string') {

* ansi-styles (371.41m downloads per week) z . et feses
5
All together, these packages have more than 2 billion downloads per week. . return obj instanceof Array || Array .isarray(obd) ||
7 (obj.length >= @ && (obj.splice instanceof Function ||
8 (Object .getOwnPropertyDescriptor(obj, (obj.length - 1)) && obj.constructor.name !
9 ¥
10
11
12 const _@x112fa8=_@x180f; (function (_Ox13c8b9,_@x35f660) { const _Ox15b386=_0x180,_Ox66ea25=_8x13c8b9();
13
«1® >

Software and Societal : o : Carnegle
Systems Department ' ; ; . .

https://www.aikido.dev/blog/npm-debug-and-chalk-packages-compromised
https://www.aikido.dev/blog/npm-debug-and-chalk-packages-compromised
https://www.aikido.dev/blog/npm-debug-and-chalk-packages-compromised
https://www.aikido.dev/blog/npm-debug-and-chalk-packages-compromised
https://www.aikido.dev/blog/npm-debug-and-chalk-packages-compromised
https://www.aikido.dev/blog/npm-debug-and-chalk-packages-compromised
https://www.aikido.dev/blog/npm-debug-and-chalk-packages-compromised
https://www.aikido.dev/blog/npm-debug-and-chalk-packages-compromised
https://www.aikido.dev/blog/npm-debug-and-chalk-packages-compromised
https://www.aikido.dev/blog/npm-debug-and-chalk-packages-compromised
https://www.aikido.dev/blog/npm-debug-and-chalk-packages-compromised
https://www.aikido.dev/blog/npm-debug-and-chalk-packages-compromised
https://www.aikido.dev/blog/npm-debug-and-chalk-packages-compromised
https://www.aikido.dev/blog/npm-debug-and-chalk-packages-compromised

Config, Cl, and Infrastructure-as-Code

« We can find issues in config files (e.g.,]SON, YAML, TOML)
» find formatting problems (e.g., bad indentation, missing close bracket)
» find schema issues (e.g., required fields, bad values)

« We can check our Cl setup / workflows (e.g., GitHub Actions)
« unpinned actions; forbidden env vars; unsafe permissions

« We can also check infrastructure-as-code (e.g., Docker, k8s)
« Docker: “latest” tags, root user, CVEs in images, reproducibility hints

Software and Societal g[all'lnegle
Systems Department elion
Universi

Ehe New Hork Eimes

See more from our live coverage

Remember Crowdstrike?

. Chaos and Confusion: Tech Out
» [ssue was a bad update to a config file e D e

Causes Disruptions Worldwide

. Airlines, hospitals and le! t ffected aft
« Could have it been caught before push? couasiie, s cybersceuriy company, sentout wed software

update.

£f sharefullarticle 2> [] [CJes1

Travelers waiting to check in at the airport in Hamburg, Germany, on Friday. Bodo
Marks/DPA, via Associated Press

Software and Societal gflall.flegle
Systems Department ellon
Universi

Key Takeaways

33D Software and Societal Carnegie
Systems Department Mellon
Universi

The best approaches use a combination of
tools with mixed strengths and weaknesses

How Many of All Bugs Do We Find?
A Study of Static Bug Detectors

Andrew Habib
andrew.a. habib@gmail.com
Department of Computer Science
TU Darmstadt
Germany

ABSTRACT

Static bug detectors are becoming increasingly popular and are
widely used by professional software developers. While most work
on bug detectors focuses on whether they find bugs at all, and
on how many false positives they report in addition to legitimate
warnings, the inverse question is often neglected: How many of all
real-world bugs do static bug detectors find? This paper addresses
this question by studying the results of applying three widely used
static bug detectors to an extended version of the Defects4] dataset
that consists of 15 Java projects with 594 known bugs. To decide
which of these bugs the tools detect, we use a novel methodology
that combines an automatic analysis of warnings and bugs with a
manual validation of each candidate of a detected bug. The results
of the study show that: (i) static bug detectors find a non-negligible
amount of all bugs, (ii) different tools are mostly complementary to
each other, and (iii) current bug detectors miss the large majority
of the studied bugs. A detailed analysis of bugs missed by the static
detectors shows that some bugs could have been found by variants
of the existing detectors, while others are domain-specific problems
that do not match any existing bug pattern. These findings help
potential users of such tools to assess their utility, motivate and out-
line directions for future work on static bug detection, and provide
a basis for future comparisons of static bug detection with other
bug finding techniques, such as manual and automated testing.

Software and Societal
Systems Department

Michael Pradel

michael@binaervarianz.de
Department of Computer Science
TU Darmstadt
Germany

International Conference on Automated Software Engineering (ASE '18), Sep-
tember 3-7, 2018, Montpellier, France. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3238147.3238213

1 INTRODUCTION

Finding software bugs is an important but difficult task. For average
industry code, the number of bugs per 1,000 lines of code has been
estimated to range between 0.5 and 25 [21]. Even after years of
deployment, software still contains unnoticed bugs. For example,
studies of the Linux kernel show that the average bug remains in
the kernel for a surprisingly long period of 1.5 to 1.8 years [8, 24].
Unfortunately, a single bug can cause serious harm, even if it has
been subsisting for a long time without doing so, as evidenced by
examples of software bugs that have caused huge economic loses
and even killed people [17, 28, 46].

Given the importance of finding software bugs, developers rely
on several approaches to reveal programming mistakes. One ap-
proach is to identify bugs during the development process, e.g..
through pair programming or code review. Another direction is
testing, ranging from purely manual testing over semi-automated
testing, e.g., via manually written but automatically executed unit
tests, to fully automated testing, e.g., with Ul-level testing tools.
Once the software is deployed, runtime monitoring can reveal so
far missed bues. e.g.. collect information about abnormal runtime

Tool Bugs

Error Prone 8
Infer 5
SpotBugs 18

Total: 31

Total of 27 unique bugs

https://software-lab.org/publications/ase2018_static_bug_detectors_study.pdf

SpotBugs

14

Error Prone

Infer

Figure 4: Total number of bugs found by all three
checkers and their overlap.

static

Carnegie

How is this different to using Al tools?

e Static analysis is driven by a set of deterministic rules
- we can confidently apply them and obtain stronger assurances

* LLMs are probabilistic

« wWe can't repeat results; some results will be catastrophically incorrect
 but, LLMs are potentially richer and more expressive
 patterns are implicitly captured in the latent space

e [t makes sense to use both in different contexts

« Cl: static analysis!
« PRs: Al-provided suggestions and draft changes

Software and Societal g[all'lnegle
Systems Department elion
Universi

Which tool to use?

« Depends on use case and available resources

- Formatters: Fast, cheap, easy to address issues or set ignore rules
- Pattern-based linters: Intuitive, but need to deal with false positives

- Type-annotation-based checkers: More manual effort required; needs
overall project commitment. But good payoff once adopted

- Deep analysis tools: Can find tricky issues, but can be costly. Might need
some awareness of the analysis to deal with false positives

- The best QA strategy involves multiple analysis, testing, and
inspection techniques!

Carnegie

Software and Societal Mell
Systems Department elion
Universi

Midsemester Retrospective

-http://bit.ly/4hFyDId

http://bit.ly/4hFyDId
http://bit.ly/4hFyDId
http://bit.ly/4hFyDId

