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• Mid-semester grades released

• Final on May 5 at 1pm

• P3A due tonight

Administrivia
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Smoking Section

• Last full row
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Let’s start with an
AI-generated song…

Just using the prompt: 

“Write a song about machine 
learning. Give examples of how 
machine learning is so great. 
And then talk about how it can 
also harm if not used with 
caution.”
https://suno.com/song/f9b0d75d-d33e-4d2b-aa90-

64a26a2e10e3?sh=OmVaT8GQO7edX1fr 4

https://suno.com/song/f9b0d75d-d33e-4d2b-aa90-64a26a2e10e3?sh=OmVaT8GQO7edX1fr
https://suno.com/song/f9b0d75d-d33e-4d2b-aa90-64a26a2e10e3?sh=OmVaT8GQO7edX1fr


https://openai.com/sora/ 5

https://openai.com/sora/


https://www.youtube.com/watch?v=_dZoscOdDkg

https://www.youtube.com/watch?v=_dZoscOdDkg


https://www.youtube.com/watch?v=_dZoscOdDkg

https://www.youtube.com/watch?v=_dZoscOdDkg


Virtual Assistants

Recommendation Systems

Fraud Detection

Image Recognition 8



AI Assists in Healthcare Diagnostics

Autonomous Vehicles
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Definition of Artificial Intelligence (AI)

"the science and engineering of making intelligent machines”

- John McCarthy 
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a wide range of technologies, strategies, and 

algorithms for machines to mimic human 
intelligence

subset of AI focused on the idea that machines 

can learn from observations or data 
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Machine Learning in One Slide
(Supervised)

Lots of labelled data

(Inputs, outputs)

Model

Training

“bird”

Input Output

“dog”

Input Output
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a wide range of technologies, strategies, and 

algorithms for machines to mimic human 
intelligence

subset of AI focused on the idea that machines 

can learn from observations or data 

specialized subset of ML that uses neural 

networks with many layers (mimics the neural 
networks of the human brain)
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Tons of Features

15

DL automates feature extraction -- handles raw data without needing 

human-designed features.



Different Categories of ML Algorithms

• Supervised 

• Unsupervised

• Reinforcement Learning
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https://medium.com/@cedric.vandelaer/reinforcement-learning-an-introduction-part-1-4-866695deb4d1 17

https://medium.com/@cedric.vandelaer/reinforcement-learning-an-introduction-part-1-4-866695deb4d1


https://devopedia.org/supervised-vs-unsupervised-learning 18

https://devopedia.org/supervised-vs-unsupervised-learning


https://devopedia.org/supervised-vs-unsupervised-learning 19

https://devopedia.org/supervised-vs-unsupervised-learning


Supervised Learning

20



Supervised Learning: 
Different Complexities and Capabilities

Deep Neural NetworkDecision Tree 21



Unsupervised Learning
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https://devopedia.org/supervised-vs-unsupervised-learning 23

https://devopedia.org/supervised-vs-unsupervised-learning


Reinforcement learning

Agent: The decision-maker (the 
ML algorithm)

Environment: The problem space 
that the agent interacts with

Action: A step the agent takes to 
navigate the environment

Reward: The feedback the agent 
receives after taking an action
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Different Categories of ML Algorithms

• Supervised 

• Unsupervised

• Reinforcement Learning
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Activity: Choosing the Algorithm 

Three Scenarios:

Scenario A: Music 

Recommendation App
Scenario B: Analyzing 

Sales Data

Scenario C: Adaptive 

Game Difficulty
27



Activity: Choosing the Algorithm 

In a team of 3-4 students, for one assigned scenario:

• Discuss which learning strategies (supervised, 
unsupervised, or reinforcement) might be suitable for 
their scenario

• Determine why one might be more appropriate than the 
others.

• Consider the nature of the data, the problem objectives, 
and any aspects of adaptability or exploration required.

28



https://medium.com/@cedric.vandelaer/reinforcement-learning-an-introduction-part-1-4-866695deb4d1 29

https://medium.com/@cedric.vandelaer/reinforcement-learning-an-introduction-part-1-4-866695deb4d1


Activity: Choosing the Algorithm 

Supervised Learning: train model on historical data; 
use labeled data of past user preferences to predict 
new songs they might like.

Unsupervised Learning: use clustering techniques to 
group similar music or users to offer recommendations 
within those clusters.

Reinforcement Learning: adapt to user feedback 
(likes/dislikes) over time to improve recommendations, 
learning optimal strategies through reward signals.

Scenario A: Music 

Recommendation App
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Activity: Choosing the Algorithm 

Supervised Learning: use historical sales data to train 
predictive models for forecasting future sales based on 
labeled outcomes (e.g., sales figures).

Unsupervised Learning: cluster analysis can identify 
groupings or patterns in products frequently 
purchased together without prior labels.

Reinforcement Learning: not a typical choice
Scenario B: Analyzing 

Sales Data
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Activity: Choosing the Algorithm 

Supervised Learning: use labeled outcomes of 
previous game sessions for modeling difficulty 
adjustments based on historical performance data

Unsupervised Learning: not typically the primary 
approach.

Reinforcement Learning: adapt difficulty levels 
dynamically based on player performance feedback 
using reward signals (e.g., player scores or game 
duration)Scenario C: Adaptive 

Game Difficulty

32



Tradeoffs

Deep Neural NetworkDecision Tree 33



Tradeoffs

• Accuracy

• Capabilities (e.g. classification, recommendation, clustering…)

• Amount of training data needed

• Inference latency

• Learning latency

• Model size

• Explainable

• …
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Black-box View of ML

Image: https://xkcd.com/1838/ 35
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Which ones are more important?

Scenario A: Music 

Recommendation App
Scenario B: Analyzing 

Sales Data

Scenario C: Adaptive 

Game Difficulty

Accuracy, latency, model size, explainability

37



ML Development Process 
(ML Pipeline)

Source: “Software Engineering for Machine Learning: A Case Study” by Amershi et al. ICSE 2019
38



Typical ML Pipeline
• Static

• Get labeled data (data collection, cleaning and, labeling)

• Identify and extract features (feature engineering)

• Split data into training and evaluation set 

• Learn model from training data (model training)

• Evaluate model on evaluation data (model evaluation)

• Repeat, revising features

• In production
• Evaluate model on production data; monitor (model monitoring)

• Select production data for retraining (model training + evaluation)

• Update model regularly (model deployment)
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ML Evaluation (Static)
• Prediction accuracy on learned data vs

• Prediction accuracy on unseen data
• Separate learning set, not used for training

• For binary predictors: false positives vs. false negatives, precision vs. recall

• For numeric predictors: average (relative) distance between real and 
predicted value

• For ranking predictors: top-K, etc.
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ML Evaluation (Static)

https://levity.ai/blog/precision-vs-recall41

https://levity.ai/blog/precision-vs-recall


ML Evaluation (In Production)

• Beyond static data sets, build telemetry

• Identify mistakes in practice

• Use sample of live data for evaluation

• Retrain models with sampled live data 
regularly

• Monitor accuracy and intervene

42



SE and ML



SE vs ML

Specification in SE
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SE vs ML

def detectObjects(image):
"""
Detect objects visible in image.

????
"""

Lack of Specification in ML

45
House? Plant?



SE vs ML
• ML is more data-focused

Relies heavily on data to train models; data preprocessing is crucial

• ML is more experimental
Experiment-driven with model training, testing, and refinement based on empirical data.

• SE is more structured or process-oriented
Structured methodologies (e.g., Agile, Waterfall) guiding the development lifecycle from design 
to deployment

• ML is more algorithmic Focus
Priority on development of algorithms (e.g., supervised, unsupervised learning) for pattern 
recognition.

• The concept of evaluation is very different
Functional correctness vs accuracy
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Change of process/ metrics/ 
mindsets needed…

We often run into engineers 
thinking about these as unit 
tests. […] It is OK that there is 
63 failures. Engineers tend to 
think about it as ohh [...] I 
need […]. 100% pass rate

Nahar, Nadia, et al. "Beyond the Comfort Zone: Emerging Solutions to Overcome Challenges in Integrating LLMs into Software Products.”

ICSE SEIP 2024. 47



Change of process/ metrics/ 
mindsets needed…

Nahar, Nadia, et al. "Collaboration challenges in building ml-enabled systems: Communication, documentation, engineering, and process."

Proceedings of the 44th international conference on software engineering. 2022.
48



SE and ML: Connected in Two Ways 

Using ML for engineering

How to use AI to help engineering 
processes?

Engineering ML systems

How to integrate AI components into 
engineering systems?

Software engineering for 

Artificial Intelligence: SE4AI
Artificial intelligence for 

software engineering: AI4SE
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How can ML be useful in SE?

• Automation and reducing manual efforts
- automate repetitive tasks such as code generation, bug detection, 
and code reviews

- AI powered tools and IDEs for code autocompletion and real-time 
suggestions

• Support in problem-solving and decision-making
- analyze large volumes of data to uncover patterns and insights for 
informed decision-making in project management etc.

- process and interpret vast amounts of textual data (documentation, 
logs, etc.), assisting in efficient diagnostics and troubleshooting
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Code Generation and Assistance

GitHub Copilot - Visual Studio Marketplace

51

https://www.google.com/url?sa=i&url=https%3A%2F%2Fmarketplace.visualstudio.com%2Fitems%3FitemName%3DGitHub.copilot&psig=AOvVaw0TXsbZhenGAWAVJL1skQnk&ust=1741081270519000&source=images&cd=vfe&opi=89978449&ved=0CBQQjRxqFwoTCPjz46fP7YsDFQAAAAAdAAAAABBD


Generate Code in Different Ways
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Also useful for…

• Writing Tests

• Refactoring Code

• Understanding Code

53



Benefit

• Increased productivity

• Assists new programmers
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Limitation: 
Incorrect/ Non-optimal code

Yetistiren, Burak, Isik Ozsoy, and Eray Tuzun. "Assessing the quality of GitHub copilot’s code generation." Proceedings of the 18th international 

conference on predictive models and data analytics in software engineering. 2022. 55



Limitation: Security

Fu, Yujia, et al. "Security Weaknesses of Copilot-Generated Code in GitHub Projects: An Empirical Study." ACM Transactions on Software Engineering 

and Methodology (2025). 56



Risk: Overreliance

https://www.darrenhorrocks.co.uk/why-copilot-making-programmers-worse-at-programming/

Lee, Hao-Ping Hank, et al. "The Impact of Generative AI on Critical Thinking: Self -Reported Reductions in Cognitive Effort and Confidence 

Effects From a Survey of Knowledge Workers." (2025). 57



Automated Code Reviews
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Automated Testing
Very active research area.

• ML-based test generation
Generate test cases intelligently by analyzing code changes, defect history, and user 
behaviors, improving test coverage and efficiency

• Designing effective metrics
Develop metrics to evaluate test effectiveness and prioritize testing efforts.

• Intelligent orchestration
Use ML to prioritize and orchestrate test execution efficiently.

• Enhancing CI pipeline
Integrate AI/ML to streamline and enhance the continuous integration process.
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Generate Property Test for Python

https://proptest.ai/ 60



Project Management

ML models analyze historical project data to forecast 
timelines, determine resource allocation, and predict 
budgetary needs, aiding in proactive decision-making.
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Project Management 

Microsoft Project

Asana Intelligence

62



ML for Software Security

• Threat Detection and Security Recommendation

- monitor data streams to spot anomalous patterns indicative  
of unauthorized access or potential security threats

- offer specific remediation actions

63



Large Language 
Models (LLMs)



a wide range of technologies, strategies, and 

algorithms for machines to mimic human 
intelligence

subset of AI focused on the idea that machines 

can learn from observations or data 

specialized subset of ML that uses neural 

networks with many layers (mimics the neural 
networks of the human brain)LLM

advanced deep learning models designed to comprehend, 

generate, and manipulate human language 65



Large Language Models (LLMs)

• Language Modeling: Measure probability of a sequence of words
• Input: Text sequence
• Output: Most likely next word

*not actual size

• LLMs are… large
• GPT-3 has 175B parameters
• GPT-4 is estimated to have ~1.24 Trillion

• Pre-trained with up to a PB of Internet text data
• Massive financial and environmental cost

66



Language Models are Pre-trained

Only a few people have resources to train LLMs

Access through API calls

- OpenAI, Google Vertex AI, Anthropic, Hugging Face

For us, these are black box components that make errors!

67



LLMs are far from perfect

68



LLMs are far from perfect

• Hallucinations
• Factually Incorrect Output

• High Latency
• Output words generated one at a time
• Larger models also tend to be slower

• Output format
• Hard to structure output (e.g. extracting date from text)

69



Prompt Engineering

The process of crafting and refining prompts to effectively interact 
with LLMs to get accurate, relevant, and useful responses.
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Writing a Good Prompt
• Key Principles

• Clarity: Clearly define the question or task to avoid ambiguous model 
responses.

• Specificity: Provide specific context or details relevant to the desired 
output.

• Iterative Refinement: Adjust prompts based on initial outputs to better 
align with expectations.

• Practical Tips
• Demonstrate the expected output or structure within the prompt.
• Specify limits, such as word count or style guidelines, to guide the model’s 

response.
• Try various phrasings and formats to discover what yields the best results.

71



Many different suggestions and debates 

Learn more about prompt at https://www.promptingguide.ai
72

https://www.promptingguide.ai/


Evaluation

It’s really a social science problem more than a science 
problem.

It’s just frustrating to come up with some scoring criteria.

Nahar, Nadia, et al. "Beyond the Comfort Zone: Emerging Solutions to Overcome Challenges in Integrating LLMs into Software Products.”

ICSE SEIP 2024. 73



Evaluation

Defining custom metrics through iterative collaboration and 
expert consultations: “What do we care about in our output?”

Example: creative writing

• Lexical Diversity (unique word counts)

• Semantic diversity (pairwise similarity)

74



Evaluation

Combining qualitative and quantitative metrics.

3 points

11-21 words each

quantitative/objective metrics

content-groundedness

qualitative/subjective metrics

75



Evaluation

Evaluating subjective metrics using LLM validators

• Define metrics and rubrics for 
different qualities of concern.

• LLM gives score based on rubric.

• Example qualities: fluency, salience, 
consistency

76



World is 
throwing 
LLMs at 
everything

77
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Which of these problems should be 
solved by an LLM? Why or why not?

● Type checking Java code

● Grading mathematical proofs

● Answering emergency medical questions

● Unit test generation for NodeBB devs

79



Consider alternative solutions, error probability, 
risk tolerance and risk mitigation strategies

Alternative Solutions: Are there alternative solutions to your task that 

deterministically yield better results? Eg: Type checking Java code

Error Probability: How often do we expect the LLM to correctly solve an 

instance of your problem? This will change over time. Eg: Grading mathematical 

proofs

Risk tolerance: What’s the cost associated with making a mistake? Eg: 

Answering emergency medical questions

Risk mitigation strategies: Are there ways to verify outputs and/or minimize 

the cost of errors? Eg: Unit test generation
80



More practical factors to consider when 
productionizing

● Operational Costs

● Latency/speed

● Intellectual property

● Security

81



Estimating operational costs

Most LLMs will charge based on prompt length. 

Use these prices together with assumptions about usage of your 
application to estimate operating costs.

Some companies (like OpenAI) quote prices in terms of tokens -
chunks of words that the model operates on.

• GCP Vertex AI Pricing

• OpenAI API Pricing
82

https://cloud.google.com/vertex-ai/pricing
https://openai.com/pricing


Understanding and optimizing latency/speed

Making inferences using LLMs can be 
slow… 

Strategies to improve performance:

● Caching - store LLM input/output pairs for 
future use

● Streaming responses - supported by most 
LLM API providers. Better UX by streaming 
response line by line.

83



Open Intellectual Property Concerns

● Was the data used to train these LLMs obtained illegally?

● Who owns the IP associated with LLM outputs?

● Should sensitive information be provided as inputs to LLMs? 

84



Security concerns - prompt injection

Kang, Daniel, et al. "Exploiting programmatic behavior of llms: Dual-use through standard security attacks." arXiv preprint arXiv:2302.05733 (2023). https://arxiv.org/abs/2302.05733 85

https://arxiv.org/abs/2302.05733
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