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• P3B (Final Deliverables) due on Thursday

Administrivia
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Smoking Section

• Last full row

3



Learning Goals

• Identify the stages/tasks that comprise the typical ML 
development pipeline. 

• Identify differences between traditional software development 
and development of ML systems.

• Understand the complexities of integrating ML into a software 
engineering process/system

• Identify challenges in handling unreliable ML components, and 
strategies to mitigate impact of mistakes

• Identify the architectural decisions to be taken and tradeoffs
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What is one thing you 
remember from last class?
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SE and ML: Connected in Two Ways 

Using ML for engineering

How to use AI to help engineering 
processes?

Engineering ML systems

How to integrate AI components into 
engineering systems?

Software engineering for 

Artificial Intelligence: SE4AI
Artificial intelligence for 

software engineering: AI4SE
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From Models to Systems



ML Model vs. ML System
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ML Model vs. ML System



Apollo ML Models

10

Source: Zi Peng, Jinqiu Yang, Tse-Hsun (Peter) Chen, and Lei Ma. 2020. A First Look at the Integration of Machine Learning Models in Complex Autonomous Driving Systems: A Case 

Study on Apollo. In Proceedings of the 28th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE ’20) 10



Augmented Reality Smart Glasses

11



What apps do you use 
that have ML?



Machine Learning Pipeline

Source: “Software Engineering for Machine Learning: A Case Study” by Amershi et al. ICSE 2019 13



Let’s Take a Closer Look 

Focus: building models from given 

data, evaluating accuracy
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Only a fraction of real-world ML 
systems is ML code…

ML Code

Sculley, et al. "Hidden technical debt in machine learning systems." NeurIPS 28 (2015): 2503-2511. 15



Pipeline Automation and MLOps

Focus: experimenting, deploying, scaling training and serving, model monitoring and updating
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DevOps and MLOps

Set of practices for continuous delivery; relies on heavy

automation, e.g., continuous delivery, monitoring

Automation around Machine Learning pipeline, including

training, evaluation, versioning, and deployment

Think about MLOps as a specialized subset of DevOps for machine learning applications 17



There is more to ML systems than 
MLOps…

18https://fullstackdeeplearning.com/course/2022/lecture-1-course-vision-and-when-to-use-ml/



ML is a Component in a System
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Or Many ML Components Actually
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What are some ML vs non-ML 
components in the apps, you 

mentioned?
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Case Study: Augmented Reality 
Smart Glasses for Navigation
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Activity: Draw Architectural Diagram 
with ML and non-ML Components 

In a team of 2-3 students, consider the augmented reality 
navigation system to:

• identify the ML components

• identity the non-ML components

• draw an architectural diagram with the components with 
notations of your choice
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Systems Thinking

24



ML Introduces Additional 
Complexities in Software Systems

25
Hesenius, Marc, et al. "Towards a software engineering process for developing data-driven applications." 2019 IEEE/ACM 7th International Workshop on 

Realizing Artificial Intelligence Synergies in Software Engineering (RAISE). IEEE, 2019.



ML Introduces Additional 
Complexities in Software Systems

26

Christian Kästner. Machine Learning in Production: From Models to Products. 2022.

https://ckaestne.medium.com/introduction-to-machine-learning-in-production-eef7427426f1

https://ckaestne.medium.com/introduction-to-machine-learning-in-production-eef7427426f1


27https://www.iiot-world.com/industrial-iot/connected-industry/why-85-of-machine-learning-projects-fail

https://www.iiot-world.com/industrial-iot/connected-industry/why-85-of-machine-learning-projects-fail


28https://spectrum.ieee.org/how-ibm-watson-overpromised-and-underdelivered-on-ai-health-care

https://spectrum.ieee.org/how-ibm-watson-overpromised-and-underdelivered-on-ai-health-care


29
https://www.nytimes.com/2024/02/27/technology/apple-ends-electric-car-plan.html

https://www.nytimes.com/2024/02/28/technology/behind-the-apple-car-dead.html

https://www.nytimes.com/2024/02/27/technology/apple-ends-electric-car-plan.html
https://www.nytimes.com/2024/02/28/technology/behind-the-apple-car-dead.html


What Changes with ML



Contrast with SE

• Experimental: Experiment-driven with model training, testing, and 
refinement based on empirical data.

• Data-Driven: Relies heavily on data to train models; data 
preprocessing is crucial.

• Algorithmic Focus: Development of algorithms (e.g., supervised, 
unsupervised learning) for pattern recognition.

• Model Evaluation: Continuous refinement through metrics like 
accuracy, precision, and recall.
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Change of process/ metrics/ 
mindsets needed…

Nahar, Nadia, et al. "Collaboration challenges in building ml-enabled systems: Communication, documentation, engineering, and process."

Proceedings of the 44th international conference on software engineering . 2022.
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Specifications and Testing in SE

33

/**
* Return the sum of all values
* @ensures \result = \sum int i; 0 <= i < …
*/
int sum(int[] values);

@Test
void testSentence1() {
assertEquals(9, sum({2, 3, 4}));

}



Lack of Specification in ML

/**
* Detect objects visible in image
* ????
*/
ObjectId[] detectObjects(File image);
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Lack of Specification in ML
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@Test
void testHomePhoto() {
assertEquals({HOUSE, PLANT}, 

detectObjects("img1.jpg"));
}

@Test
void testStreetPhoto() {
assertEquals({PERSON, DOG, BICYCLE}, 

detectObjects("img2.jpg"));
}



Lack of Specifications…

… breaks modular reasoning

… challenges quality assurance

… inhibits safety and fairness reasoning

… hinders coordination across teams

36

(though, we didn’t need ML to build low quality, harmful, and unethical software)



All Models are Wrong!

All models are approximations. Assumptions, whether implied or 

clearly stated, are never exactly true. 

All models are wrong, but some models are useful. 

So the question you need to ask is not "Is the model true?" (it never 

is) but "Is the model good enough for this particular application?"

George Box

37



Model Makes Mistake
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https://twitter.com/i/status/897756900753891328


Mistakes Cause Harms
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ML Model = Unreliable Function

41

Object 

Detection 
Model

Building 99%
Path 97%
Plants 98%
Flowerpot 41%
Tree 4%

No guarantees, may make mistakes, confidence unreliable

Model often inscrutable, opaque

Evaluated in terms of accuracy, not correctness



Building ML Systems



CMU 17-645: Machine Learning in Production

43
https://ckaestne.github.io/seai/

Christian Kästner, Machine 

Learning in Production, MIT 
Press, 2025.
https://mlip-cmu.github.io/book/

https://ckaestne.github.io/seai/
https://mlip-cmu.github.io/book/


Systems Thinking

• Understand system needs and goals and interactions 

with environment

• Designing components and integrating ML and non-ML 

parts into a system

• Many roles and stakeholders, interdisciplinary endeavour
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Systems Thinking
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What to do when the ML 
component makes mistake?
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Planning for Mistakes



Example: Smart Toaster
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Let’s try to brainstorm:

How can you ensure that smart 
toaster does not burn the kitchen?
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Safety Assurance in/outside the Model

In the model

• Ensure maximum toasting time

• Use heat sensor and past outputs for prediction

• Hard to make guarantees

Outside the model

• Simple code check for max toasting time

• Non-ML rule to shut down if too hot

• Hardware solution: thermal fuse
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Human in the Loop
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Human in the Loop

52

AI powered diagnostic 

systems for cancer does 

not replace pathologists



Human in the Loop
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Many different strategies
Based on fault-tolerant design, assuming that there will be software/ML 
mistakes or environment changes violating assumptions

• Human in the loop

• Undoable actions

• Guardrails

• Mistake detection and recovery (monitoring, doer-checker, fail-over, 
redundancy)

• Containment and isolation
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Undoable Actions
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Guardrails

Code check for max toasting time

Non-ML rule to shut down if too hot

Thermal fuse

56



Hazard Analysis

• Anticipate mistakes and their consequences.
• Worst thing that can happen?

• Backup strategy? Undoable? Nontechnical 
compensation?
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Fault Tree Analysis (FTA)

• Top-down, systematic method used to identify and analyze 

potential causes of system failures

• Visualized as a "fault tree" diagram

• Helps understand how component failures can lead to 

system-wide failures.
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Fault 
Tree 
Analysis 
(FTA)

Requirement:

The autonomous car shall not 

hit pedestrians.
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Fault 
Tree 
Analysis 
(FTA)
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Fault 
Tree 
Analysis 
(FTA)



62

Fault 
Tree 
Analysis 
(FTA)
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Fault 
Tree 
Analysis 
(FTA)
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Fault 
Tree 
Analysis 
(FTA)
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Fault 
Tree 
Analysis 
(FTA)



66

Fault 
Tree 
Analysis 
(FTA)



Architecting ML Systems



Architecture Decisions
• What are the major components in the system? What does each 

component do?

• Where do the components live? Monolithic vs microservices?

• How do components communicate to each other? Synchronous vs 
asynchronous calls?

• What API does each component publish? Who can access this API?

• Where does the ML inference happen? Client-side or server-side?

• Where is the telemetry data collected from the users stored?

• How large should the user database be? Centralized vs decentralized?

• ...and many others
68



Quality Requirements Drive 
Architecture Design
• Development cost, operational cost, time to release

• Scalability, availability, response time, throughput

• Security, safety, usability, fairness

• Ease of modifications and updates

• ML: Accuracy, ability to collect data, training latency

• …

69



Architecture Design Involves 
Quality Trade-offs

70



Architecture Decision: ML Model Selection

Accuracy is not Everything

ML != DL

71



Quality Tradeoffs

• Accuracy

• Capabilities (e.g. classification, recommendation, clustering…)

• Amount of training data needed

• Inference latency

• Learning latency

• Model size

• Explainable

• …
72



Tradeoffs: Accuracy vs Interpretability

73



What Qualities are Important?

Accuracy? Latency? Model Size?
74



Architecture Decision: Where 
Should the Model Live?

75

Object 

Detection 
Model

Motion 

Tracking 
Model



Considerations
• How much data is needed as input for the model?

• How much output data is produced by the model?

• How fast/energy consuming is model execution?

• What latency is needed for the application?

• How big is the model? How often does it need to be updated?

• Cost of operating the model? (distribution + execution)

• What happens if users are offline?

• …
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Latency and Bandwidth Analysis

77



Activity: Where should the model live? 

• Discuss and decide
• Where should the Object Detection component live? 

• Cloud? Phone? Glasses?

• Where should the Motion Tracking component live?
• Cloud? Phone? Glasses?

• Justify your choice
• What qualities are relevant for the decision?

78
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