Beyond Traditional Testing
with Dynamic Analysis

17-313: Foundations of Software Engineering
https://cmu-313.github.io

Michael Hilton and Chris Timperley
Fall 2025

Software and Soc t | Carnegie
Ssl) Systems D epar tm Me!lon .

University

https://cmu-313.github.io/
https://cmu-313.github.io/
https://cmu-313.github.io/

Administrivia

* Final Exam is scheduled for Friday, Dec 12th at 8:30 to 11:30am

hl = L
Software and Societal l(;jldlﬁlt‘-gle
Systems Department '1e1101

University

Learning Goals

» Understand how dynamic analysis complements static analysis
» Recognize the strengths and limitations of dynamic techniques
« Use runtime oracles to make failures observable

 Explore techniques from fuzzing and property-based testing to
mutation testing

Carnegie

Software and Societal -
S3 Mellon

Systems Department : .
University

Recap: Static vs. Dynamic Analysis

srejcontrollers/accounts/posts.js (3

136 b

1w 1

138 g

118

148 postsController.getBooknarks = async function (req, res, next) {

141 . await getPostsFromiserSet('account/bocknarks’, req, res, @ next);

Static Analysis

This function expects 3 arguments, but 4 were provided.

uz . %
143
144 postsController.gethosts = async function (req, res, next) {
145 . await getPostsFromUserset('account/posts’, req, res, next);
146 B

COVERALLS “

- “

* %

* "

o

N n
il .
- 5

Dynamic Analysis

» passport.use(*core.opi”, wew BearerStrategy((), Adth.verityToken)):
® i

© 1es = mwait plugins.hooks. fire(*Filteriauth. init’,
' ercor. lauthentication] $ferr.stack))i

5)

Carnegie

Software and Societal ; =
Systems Department Me!lon .
University

Recap: Shifting Left

 Key Idea: Find and prevent issues as early as possible
« Many issues can't be found via static analysis

Attention
to
Quality Shift Left
Model

Traditional
Quality
Model

Plan Develop Test Deploy Monitor
& Design & Build & Release & Analyze

Software and Societal](;A[dlﬁlt‘glt‘
Systems Department '1e1101

University

Let’s just write more tests?

What are the challenges and limitations
of traditional, example-based testing?

Today

* Fuzzing

* Oracles

« Mutation Testing

* Property-Based Testing

Software and Societal C‘Ial‘llt‘gie
Systems Department Mellon

University

Today

* Fuzzing

Software and Societal Cal‘llt‘gie
Systems Department Mellon
ity

Uni

Communications of the ACM (1990)

“ On a

Wn 2 e e D e o dark and stormy night one of the

study 0‘ the authors was logged on to his work-

station on a dial-up line from home

Mliuhility“ and the rain had affected the

phone lines; there were frequent

- spurious characters on the line.
The author had 1o race to see if he
could type a sensible sequence of
characters before the noise scram-
bled the command. This line noise
was not surprising; but we were
surprised that these spurious char-
acters were causing programs to
crash.

Utilities

I . How can we identify these bugs?

29

Al = L
33 Software and Societal Car negie

Systems Department Me!IOIi .
University

Infinite Monkey Theorem

“0 monkey hitting keys at random on a typewriter keyboard for
an infinite amount of time will almost surely type any given text,
including the complete works of William Shakespeare. “

Al = L
Software and Societal l(\;/[dlﬁlegle
Systems Department elion
University

https://en.wikipedia.org/wiki/Infinite_monkey_theorem
https://en.wikipedia.org/wiki/Infinite_monkey_theorem
https://en.wikipedia.org/wiki/Infinite_monkey_theorem
https://en.wikipedia.org/wiki/Infinite_monkey_theorem

Fuzz Testing randomly generates inputs and
checks for program crashes

w0019 [a%#
/dev/random r—-bm_b Program
Execute 1 A 1990 study found crashes in:
adb, as, bc, cb, col, diction,
Y

o emacs, eqn, ftp, indent, lex, ook,
m4, make, nroff, plot, prolog, ptx,
refer!, spell, style, tsort, uniq,
vgrind, vi

~ %
53 Software and Societal Car negie

Systems Department Mellon
University

Common Fuzzer-Found Bugs in C/C++

Causes: incorrect arg validation, incorrect type casting, executing
untrusted code, etc.

Effects: buffer-overflows, memory leak, division-by-zero, use-after-
free, assertion violation, etc. (“crash”)

Impact: security, reliability, performance, correctness

Al = L
Software and Societal (;fdl negie
Systems Department Mellon

University

Mutation-Based Fuzzing (e.g., Radamsa)

Seeds

<foo></foo> <Wo00>?</00>

Initial
—

Random

Mutation Execute

https://gitlab.com/akihe/radamsa

Al = L
Software and Societal (jdl negie
Systems Department Mellon

University

https://gitlab.com/akihe/radamsa
https://gitlab.com/akihe/radamsa
https://gitlab.com/akihe/radamsa
https://gitlab.com/akihe/radamsa
https://gitlab.com/akihe/radamsa
https://gitlab.com/akihe/radamsa

Mutation Heuristics

* Binary Input
* bit flips, byte flips fii
« modify, insert, delete random byte chunks A
 set randomly chosen byte chunks to interesting values e.g. INT_MAX, .

INT_MIN, 0, 1, -1, ... | !"' R
« Text Input r’//”"""'*1 ¥
* insert random symbols relevant to format (e.g. “<” and “>" for xml) F:F : -*'__l" 1:|_
 insert keywords from a dictionary (e.g. “<project>" for Maven POM.xml) ' 5 4
- GUI Input fai j

« change click types and targets
» change text
+ click different buttons

<html><head><title>Hello</title></head><body>World
</body></html>

Soft d Societal : : Carnegie
33 Oftware and Societa https://www.fuzzingbook.org/html/GreyboxGrammarFuzzer.html Mellon

Systems Department : .
University

Coverage-Guided Fuzzing (e.g., AFL)

Seeds

<foo></foo> <woo0>?</00>

Initial

— Program

\ Random
Pick Mutation

Coverage
Add Instrumentation
Input’

Execute

Execution feedback

1

New branch
coverage?

I <

No

®

https://Ilcamtuf.coredump.cx/afl/

Software and Societal (j‘dl‘llt‘glt‘
Systems Department Mellon

https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/

Finding Security Bugs =

o\ Meta

Meta Bug Bounty

If you believe you have found a security vulnerability on Meta (or another member
of the Meta family of companies), we encourage you to let us know right away.

Total rewards for 2025 Total rewards to date

$4,353,212 $25,497,082

$300K* $130K* $30K*

$20K* $10K* $5K* $500*
Mobile RCE Account Quest 2FA Bypass Contact point Page admin Minimum
WhatsApp Takeover Persistent full deanonymization disclosure bounty
. secure boot
Private bvpass
Processing yp

Software and Societal
Systems Department

Carnegie

Mellon :

Uniw

sity

al'S TECHNICA Al BIZ&IT CARS CULTURE GAMING HEALTH POLICY SCIENCE SECURITY SPACE TECH

Facebook’s evolutionary search for
crashing software bugs

Ars gets the first look at Facebook's fancy new dynamic analysis tool

AT

¥
| Vit i(FeTAR T

N

Carnegie
Mellon

SS Software and Societal
Systems Department 5 .
University

https://arstechnica.com/information-technology/2017/08/facebook-dynamic-analysis-software-sapienz/
https://arstechnica.com/information-technology/2017/08/facebook-dynamic-analysis-software-sapienz/
https://arstechnica.com/information-technology/2017/08/facebook-dynamic-analysis-software-sapienz/
https://arstechnica.com/information-technology/2017/08/facebook-dynamic-analysis-software-sapienz/
https://arstechnica.com/information-technology/2017/08/facebook-dynamic-analysis-software-sapienz/
https://arstechnica.com/information-technology/2017/08/facebook-dynamic-analysis-software-sapienz/
https://arstechnica.com/information-technology/2017/08/facebook-dynamic-analysis-software-sapienz/
https://arstechnica.com/information-technology/2017/08/facebook-dynamic-analysis-software-sapienz/
https://arstechnica.com/information-technology/2017/08/facebook-dynamic-analysis-software-sapienz/
https://arstechnica.com/information-technology/2017/08/facebook-dynamic-analysis-software-sapienz/
https://arstechnica.com/information-technology/2017/08/facebook-dynamic-analysis-software-sapienz/
https://arstechnica.com/information-technology/2017/08/facebook-dynamic-analysis-software-sapienz/
https://arstechnica.com/information-technology/2017/08/facebook-dynamic-analysis-software-sapienz/
https://arstechnica.com/information-technology/2017/08/facebook-dynamic-analysis-software-sapienz/
https://arstechnica.com/information-technology/2017/08/facebook-dynamic-analysis-software-sapienz/

Fuzzing in Practice
0
« Google uses ClusterFuzz to fuzz all of uninalzed
their products oo R
 supports multiple fuzzing strategies t?‘;l:d: sssert
8.4%
 “As of February 2023, ClusterFuzz has
found ~27,000 bugs in Google (e.g.,
Chrome).”
Fuzzers — Input data n Riﬁr;ed
]
Code. [‘(o9 AdcrossSantizery [corestt [Crashes | Auotiage - You

Carnegie

Software and Societal ; c
Systems Department Me!lon .
University

OSS-Fuzz: Free Fuzzing for Open-Source Software

- Upstream project

3. Sync and
bulld from Buildel’
(Cloud Build)
google/oss-fuzz GCS bucket
S. Download
4. Upload and fuzz
/| . - ClusterFuzz
1. Write fuzzers
2. Commit build configs 6. File bugs,
Verify fixes
8. Fix bugs
[—1=" Track deadlines
m' Sheriffbot
Developer

Issue tracker (monorail)

“As of August 2023, OSS-Fuzz has helped identify and fix over 10,000 vulnerabilities and
36,000 bugs across 1,000 projects.” (e.g., nodejs, django, openvpn, openssl)

Carnegie

Software and Societal
Systems Department

Mellon

University

https://bugs.chromium.org/p/oss-fuzz/issues/list?q=Type%3DBug-Security%20label%3Aclusterfuzz%20-status%3ADuplicate%2CWontFix&can=1
https://bugs.chromium.org/p/oss-fuzz/issues/list?q=Type%3DBug%20label%3Aclusterfuzz%20-status%3ADuplicate%2CWontFix&can=1
https://github.com/google/oss-fuzz/tree/master/projects

Today

e Oracles

Software and Societal Cal‘llt‘gie
Systems Department Mellon
ity

Uni

Testing is Only as Good as your Oracle

« An oracle decides if behavior is correct for a given input

- strong oracles catch bugs that weak oracles miss
« designing strong oracles is difficult and often the bottleneck

R = L
Software and Societal (jdl negie
Systems Department Me!lon .
University

Oracle: Assertions in Example-Based Tests

* This is the most common type of oracle in traditional tests

» These assertions are often hardcoded to a specific test input
» tedious to write for complex outputs (e.g., documents, actions)

* can be very brittle (e.g., formatting changes lead to test failures)
« non-determinism and environment coupling lead to flaky tests

it('should redirect to login if user is not logged in', () = {

{ response, body } = request.get(${nconf.get('url')}/me/bookmarks");
assert.equal(response.statusCode, 200);

assert(body.includes('Login to your account'), body.slice(@, 500));

});

Software and Societal
Systems Department

Carnegie
Mellon
University

Oracle: The Program Shouldn’t Crash!

- This is the oracle used by most fuzzing approaches

 This oracle is a generic property that is not tied to any test inputs
« that allows us to automatically generate and test any input
* but the oracle is weak (i.e., not crashing does not imply correct)

« We can make the oracle slightly stronger by using sanitizers
« detects illegal program states that might not cause an immediate crash
* instruments the program at compile time (e.g., -fsanitize=address)
« finds more safety issues but slows down execution / fuzzing ~

« doesn't reveal logic bugs

Carnegie

Software and Societal -
S3 Mellon

Systems Department : .
University

Oracle: Assertions in Source Code

 Assertions are executable specifications
« document intended behavior (pre/postconditions, invariants)

 This oracle is generic and not tied to any test inputs
- if we add assertions, we can use fuzzing to find some logic bugs!

function toUSD(amountCents: number): string {
assert(Number.isInteger (amountCents), 'amount must be integer cents');
assert(amountCents >= @, 'amount must be non-negative');
const dollars = (amountCents / 100).toFixed(2);
return “$${dollars} ;

Ssl) Software and Societal https://blog.regehr.org/archives/1091 Carnegie

Mellon

Systems Department https://nullprogram.com/blog/2022/06/26 University

https://blog.regehr.org/archives/1091

Assertions catch infections earlier
 Finds more bugs (e.g., during fuzzing) and helps to localize them

variables

® During execution,
the state becomes

time

® Basic idea: Observe
a transition from
sane to

) Carnegie
ft d | . . . 8
33 gsst‘é":q;eggp;?nﬂ:i https://www.whyprogramsfail.com/pdf/AssertingExpectations.pdf %Iﬁgggqih'

What's wrong with this code?

async function checkout(cart, payment) {
assert(payment.cardNumber.length === 16);

await chargeCard(payment) ;

const resp = await fetch(ShippingAPI, {
method: "POST”,

body: JSON.stringify(cart),
b

assert(resp.status === 200);

return "ok";

hl = L
Software and Societal Car negie
Systems Department

Mellon
University

Assertions should always be true unless
you have a bug in your code

» Assertions state invariants: conditions that must always hold if the
program is correct (e.g., impossible states, internal consistency).

* Never rely on asserts for control flow or user-visible behavior
« Make sure that your assertions don’t contain side effects

« Use exceptions and returns for errors that can reasonably happen
and should be handled (e.g., invalid inputs, failed API calls).

Al = L
33 Software and Societal Car negie

Systems Department N[e!IOIf :
/ . University

Assertions in the Wild: Apache Cassandra

 Used to enforce an invariant that must hold throughout sorting

@SuppressWarnings("fallthrough")
binarySort([1 a, lo, hi, start,
LongComparator c) {
(DEBUG) lo <= start && start <= hi;
(start == 1lo)
start++;
(; start < hi; start++) {
pivot = a[start];

left = lo;
right = start;
(DEBUG) left <= right;

Mellon
University

SS Software and Societal https://sourcegraph.com/github.com/apache/cassandra/- Lal-negiﬁ

Systems Department /blob/src/java/org/apache/cassandra/utils/LongTimSort.java?L227

Assertions in the Wild: SQLite & LLVM

« Used to enforce a precondition and find bugs at call sites

11db / include / 1ldb / Interpreter OptionValueUInt64.h (O

Blame

m_current_value = value;
true;
jsonCacheInsert(

sqlite3_context *ctx, false;
JsonParse *pParse

){
JsonCache *p;

SetDefaultValue(value) {
assert(pParse->zJson!=0); assert(value >= m_min_value && value <= m_max_value &&
assert(pParse->bJsonIsRCStr); "disallowed default value");

t(pP ->delta==0);
asser(,parse> i) } m_default_value = value;
p = sqlite3_get_auxdata(ctx, JSON_CACHE_ID);

(p==0){ true;
sqlite3 *db = sqlite3_context_db_handle(ctx);

: Carnegie
SS gOﬁware g Sz https://sourcegraph.com/github.com/sqlite/sqlite/-/blob/src/json.c?L439-443 Mellong
ystems Department University

Assertions in the Wild: Firefox

« Used to enforce a postcondition that makes sure

namespace mozilla {
void AudioInputProcessing::Process(AudioProcessingTrackx aTrack,

MOZ_ASSERT(static_cast<uint32_t>(mSegment.GetDuration()) +
mPacketizerInput—>FramesAvailable() ==
mPacketizerInput->mPacketSize);

MOZ_ASSERT (mSegment.GetDuration() >= 1);
MOZ_ASSERT(mSegment.GetDuration() <= mPacketizerInput->mPacketSize);
}

Software and Societal . . e Cal'negie
SSD S https://searchfox.org/firefox-main/source/dom/media/webrtc/MediaEngineWebRTCAudio.cpp %[?R%Illqi
niversity

Activity: Setup
« Everyone should participate on their laptop e C e - (RGSRE

« Open CMU-313/Pierogl/O in Codespaces
* https://github.com/CMU-313/PieroglO

cuddly computing-machine

» Create a branch for this activity

- git checkout -b andrew-id/tests e
* git push -u origin andrew-id/tests RGO D) i

Some issues need review, and may require choosing
a different dependency.

« Add your branch name to the spreadsheet

e http://bit.ly/3WgXBBe

Software and Societal Cal'negle
Systems Department Mellon

University

https://github.com/CMU-313/PierogIO
https://github.com/CMU-313/PierogIO
https://github.com/CMU-313/PierogIO
https://github.com/CMU-313/PierogIO
https://github.com/CMU-313/PierogIO
https://github.com/CMU-313/PierogIO
https://github.com/CMU-313/PierogIO
http://bit.ly/3WqXBBe
http://bit.ly/3WqXBBe
http://bit.ly/3WqXBBe
http://bit.ly/3WqXBBe

fL Activity: Write tests to find the bugs

* Find bugs in the implementation by writing test cases
* “npm run test” to run the tests (or hit the run test button in the IDE)

* Fix any bugs that you find!
« every bug should have a corresponding regression test
- only start fixing the bug once you have written the test

 Push the changes to your branch to GitHub
« git push -u origin andrew-id/tests

« When you have written at least one test, fixed a bug, and pushed
your changes to GitHub, update the spreadsheet

hl = .
Software and Societal Car negie
Systems Department Mellon

University

	Title
	Slide 1: Beyond Traditional Testing with Dynamic Analysis

	Administrivia
	Slide 2: Administrivia

	Opening
	Slide 3: Learning Goals
	Slide 4: Recap: Static vs. Dynamic Analysis
	Slide 5: Recap: Shifting Left
	Slide 6: Let’s just write more tests?
	Slide 7: What are the challenges and limitations of traditional, example-based testing?
	Slide 8: Today

	Fuzzing
	Slide 9: Today
	Slide 10
	Slide 11: Infinite Monkey Theorem
	Slide 12: Fuzz Testing randomly generates inputs and checks for program crashes
	Slide 13: Common Fuzzer-Found Bugs in C/C++
	Slide 14: Mutation-Based Fuzzing (e.g., Radamsa)
	Slide 15: Mutation Heuristics
	Slide 16: Coverage-Guided Fuzzing (e.g., AFL)
	Slide 17: Finding Security Bugs = 💵
	Slide 18
	Slide 20: Fuzzing in Practice
	Slide 21: OSS-Fuzz: Free Fuzzing for Open-Source Software

	Oracles
	Slide 22: Today
	Slide 23: Testing is Only as Good as your Oracle
	Slide 24: Oracle: Assertions in Example-Based Tests
	Slide 25: Oracle: The Program Shouldn’t Crash!
	Slide 26: Oracle: Assertions in Source Code
	Slide 27: Assertions catch infections earlier
	Slide 28: What’s wrong with this code?
	Slide 29: Assertions should always be true unless you have a bug in your code
	Slide 30: Assertions in the Wild: Apache Cassandra
	Slide 31: Assertions in the Wild: SQLite & LLVM
	Slide 32: Assertions in the Wild: Firefox
	Slide 33: 🏗️ Activity: Setup
	Slide 34: 🐛 Activity: Write tests to find the bugs

