
Beyond Traditional Testing
with Dynamic Analysis

17-313: Foundations of Software Engineering

https://cmu-313.github.io

Michael Hilton and Chris Timperley

Fall 2025

https://cmu-313.github.io/
https://cmu-313.github.io/
https://cmu-313.github.io/

Administrivia

• Final Exam is scheduled for Friday, Dec 12th at 8:30 to 11:30am

Learning Goals

• Understand how dynamic analysis complements static analysis

• Recognize the strengths and limitations of dynamic techniques

• Use runtime oracles to make failures observable

• Explore techniques from fuzzing and property-based testing to
mutation testing

Recap: Static vs. Dynamic Analysis

Static Analysis

Dynamic Analysis

Recap: Shifting Left

• Key Idea: Find and prevent issues as early as possible

• Many issues can’t be found via static analysis

Let’s just write more tests?

What are the challenges and limitations
of traditional, example-based testing?

Today

• Fuzzing

• Oracles

• Mutation Testing

• Property-Based Testing

Today

• Fuzzing

• Oracles

• Mutation Testing

• Property-Based Testing

Communications of the ACM (1990)

“

”
How can we identify these bugs?

Infinite Monkey Theorem

“a monkey hitting keys at random on a typewriter keyboard for

an infinite amount of time will almost surely type any given text,

including the complete works of William Shakespeare. “

https://en.wikipedia.org/wiki/Infinite_monkey_theorem

https://en.wikipedia.org/wiki/Infinite_monkey_theorem
https://en.wikipedia.org/wiki/Infinite_monkey_theorem
https://en.wikipedia.org/wiki/Infinite_monkey_theorem
https://en.wikipedia.org/wiki/Infinite_monkey_theorem

Fuzz Testing randomly generates inputs and
checks for program crashes

Input Program

Execute

w0o19[a%#

A 1990 study found crashes in:

adb, as, bc, cb, col, diction,

emacs, eqn, ftp, indent, lex, look,

m4, make, nroff, plot, prolog, ptx,

refer!, spell, style, tsort, uniq,
vgrind, vi

/dev/random

Common Fuzzer-Found Bugs in C/C++

Causes: incorrect arg validation, incorrect type casting, executing

untrusted code, etc.

Effects: buffer-overflows, memory leak, division-by-zero, use-after-

free, assertion violation, etc. (“crash”)

Impact: security, reliability, performance, correctness

Mutation-Based Fuzzing (e.g., Radamsa)

Input

Pick

Input’

Random

Mutation

Program

Execute

Initial
Input

Input
InputInput

Seeds

<foo></foo> <woo>?</oo>

https://gitlab.com/akihe/radamsa

https://gitlab.com/akihe/radamsa
https://gitlab.com/akihe/radamsa
https://gitlab.com/akihe/radamsa
https://gitlab.com/akihe/radamsa
https://gitlab.com/akihe/radamsa
https://gitlab.com/akihe/radamsa

Mutation Heuristics
• Binary Input

• bit flips, byte flips

• modify, insert, delete random byte chunks

• set randomly chosen byte chunks to interesting values e.g. INT_MAX,
INT_MIN, 0, 1, -1, …

• Text Input
• insert random symbols relevant to format (e.g. “<“ and “>” for xml)

• insert keywords from a dictionary (e.g. “<project>” for Maven POM.xml)

• GUI Input
• change click types and targets

• change text

• click different buttons

https://www.fuzzingbook.org/html/GreyboxGrammarFuzzer.html

Coverage-Guided Fuzzing (e.g., AFL)

Input

Pick

Input’

Random

Mutation

Program

Execute

Save?
Execution feedback

No

Yes

Add

Input’

Initial Input
Input

InputInput

Seeds

Coverage

Instrumentation

New branch

coverage?

<foo></foo> <woo>?</oo>

https://lcamtuf.coredump.cx/afl/

https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/

Finding Security Bugs =

https://arstechnica.com/information-technology/2017/08/facebook-dynamic-analysis-software-sapienz/

https://arstechnica.com/information-technology/2017/08/facebook-dynamic-analysis-software-sapienz/
https://arstechnica.com/information-technology/2017/08/facebook-dynamic-analysis-software-sapienz/
https://arstechnica.com/information-technology/2017/08/facebook-dynamic-analysis-software-sapienz/
https://arstechnica.com/information-technology/2017/08/facebook-dynamic-analysis-software-sapienz/
https://arstechnica.com/information-technology/2017/08/facebook-dynamic-analysis-software-sapienz/
https://arstechnica.com/information-technology/2017/08/facebook-dynamic-analysis-software-sapienz/
https://arstechnica.com/information-technology/2017/08/facebook-dynamic-analysis-software-sapienz/
https://arstechnica.com/information-technology/2017/08/facebook-dynamic-analysis-software-sapienz/
https://arstechnica.com/information-technology/2017/08/facebook-dynamic-analysis-software-sapienz/
https://arstechnica.com/information-technology/2017/08/facebook-dynamic-analysis-software-sapienz/
https://arstechnica.com/information-technology/2017/08/facebook-dynamic-analysis-software-sapienz/
https://arstechnica.com/information-technology/2017/08/facebook-dynamic-analysis-software-sapienz/
https://arstechnica.com/information-technology/2017/08/facebook-dynamic-analysis-software-sapienz/
https://arstechnica.com/information-technology/2017/08/facebook-dynamic-analysis-software-sapienz/
https://arstechnica.com/information-technology/2017/08/facebook-dynamic-analysis-software-sapienz/

Fuzzing in Practice

• Google uses ClusterFuzz to fuzz all of
their products
• supports multiple fuzzing strategies

• “As of February 2023, ClusterFuzz has
found ~27,000 bugs in Google (e.g.,
Chrome).”

OSS-Fuzz: Free Fuzzing for Open-Source Software

“As of August 2023, OSS-Fuzz has helped identify and fix over 10,000 vulnerabilities and
36,000 bugs across 1,000 projects.” (e.g., nodejs, django, openvpn, openssl)

https://bugs.chromium.org/p/oss-fuzz/issues/list?q=Type%3DBug-Security%20label%3Aclusterfuzz%20-status%3ADuplicate%2CWontFix&can=1
https://bugs.chromium.org/p/oss-fuzz/issues/list?q=Type%3DBug%20label%3Aclusterfuzz%20-status%3ADuplicate%2CWontFix&can=1
https://github.com/google/oss-fuzz/tree/master/projects

Today

• Fuzzing

• Oracles

• Mutation Testing

• Property-Based Testing

Testing is Only as Good as your Oracle

• An oracle decides if behavior is correct for a given input

• strong oracles catch bugs that weak oracles miss

• designing strong oracles is difficult and often the bottleneck

Oracle: Assertions in Example-Based Tests

• This is the most common type of oracle in traditional tests

• These assertions are often hardcoded to a specific test input
• tedious to write for complex outputs (e.g., documents, actions)

• can be very brittle (e.g., formatting changes lead to test failures)

• non-determinism and environment coupling lead to flaky tests

Oracle: The Program Shouldn’t Crash!

• This is the oracle used by most fuzzing approaches

• This oracle is a generic property that is not tied to any test inputs
• that allows us to automatically generate and test any input

• but the oracle is weak (i.e., not crashing does not imply correct)

• We can make the oracle slightly stronger by using sanitizers
• detects illegal program states that might not cause an immediate crash

• instruments the program at compile time (e.g., -fsanitize=address)

• finds more safety issues but slows down execution / fuzzing

• doesn’t reveal logic bugs

Oracle: Assertions in Source Code

• Assertions are executable specifications

• document intended behavior (pre/postconditions, invariants)

• This oracle is generic and not tied to any test inputs
• if we add assertions, we can use fuzzing to find some logic bugs!

https://blog.regehr.org/archives/1091
https://nullprogram.com/blog/2022/06/26

function toUSD(amountCents: number): string {
 assert(Number.isInteger(amountCents), 'amount must be integer cents');
 assert(amountCents >= 0, 'amount must be non-negative');
 const dollars = (amountCents / 100).toFixed(2);
 return `$${dollars}`;
}

https://blog.regehr.org/archives/1091

Assertions catch infections earlier

• Finds more bugs (e.g., during fuzzing) and helps to localize them

https://www.whyprogramsfail.com/pdf/AssertingExpectations.pdf

What’s wrong with this code?
async function checkout(cart, payment) {
 assert(payment.cardNumber.length === 16);

 await chargeCard(payment);

 const resp = await fetch(ShippingAPI, {
 method: "POST”,
 body: JSON.stringify(cart),
 });
 assert(resp.status === 200);

 return "ok";
}

Assertions should always be true unless
you have a bug in your code

• Assertions state invariants: conditions that must always hold if the
program is correct (e.g., impossible states, internal consistency).

• Never rely on asserts for control flow or user-visible behavior

• Make sure that your assertions don’t contain side effects

• Use exceptions and returns for errors that can reasonably happen
and should be handled (e.g., invalid inputs, failed API calls).

Assertions in the Wild: Apache Cassandra

• Used to enforce an invariant that must hold throughout sorting

https://sourcegraph.com/github.com/apache/cassandra/-
/blob/src/java/org/apache/cassandra/utils/LongTimSort.java?L227

Assertions in the Wild: SQLite & LLVM

• Used to enforce a precondition and find bugs at call sites

https://sourcegraph.com/github.com/sqlite/sqlite/-/blob/src/json.c?L439-443

Assertions in the Wild: Firefox

• Used to enforce a postcondition that makes sure

https://searchfox.org/firefox-main/source/dom/media/webrtc/MediaEngineWebRTCAudio.cpp

 Activity: Setup

• Everyone should participate on their laptop

• Open CMU-313/PierogI/O in Codespaces
• https://github.com/CMU-313/PierogIO

• Create a branch for this activity
• git checkout -b andrew-id/tests

• git push -u origin andrew-id/tests

• Add your branch name to the spreadsheet

•http://bit.ly/3WqXBBe

https://github.com/CMU-313/PierogIO
https://github.com/CMU-313/PierogIO
https://github.com/CMU-313/PierogIO
https://github.com/CMU-313/PierogIO
https://github.com/CMU-313/PierogIO
https://github.com/CMU-313/PierogIO
https://github.com/CMU-313/PierogIO
http://bit.ly/3WqXBBe
http://bit.ly/3WqXBBe
http://bit.ly/3WqXBBe
http://bit.ly/3WqXBBe

 Activity: Write tests to find the bugs

• Find bugs in the implementation by writing test cases
• “npm run test” to run the tests (or hit the run test button in the IDE)

• Fix any bugs that you find!
• every bug should have a corresponding regression test

• only start fixing the bug once you have written the test

• Push the changes to your branch to GitHub

• git push -u origin andrew-id/tests

• When you have written at least one test, fixed a bug, and pushed
your changes to GitHub, update the spreadsheet

	Title
	Slide 1: Beyond Traditional Testing with Dynamic Analysis

	Administrivia
	Slide 2: Administrivia

	Opening
	Slide 3: Learning Goals
	Slide 4: Recap: Static vs. Dynamic Analysis
	Slide 5: Recap: Shifting Left
	Slide 6: Let’s just write more tests?
	Slide 7: What are the challenges and limitations of traditional, example-based testing?
	Slide 8: Today

	Fuzzing
	Slide 9: Today
	Slide 10
	Slide 11: Infinite Monkey Theorem
	Slide 12: Fuzz Testing randomly generates inputs and checks for program crashes
	Slide 13: Common Fuzzer-Found Bugs in C/C++
	Slide 14: Mutation-Based Fuzzing (e.g., Radamsa)
	Slide 15: Mutation Heuristics
	Slide 16: Coverage-Guided Fuzzing (e.g., AFL)
	Slide 17: Finding Security Bugs = 💵
	Slide 18
	Slide 20: Fuzzing in Practice
	Slide 21: OSS-Fuzz: Free Fuzzing for Open-Source Software

	Oracles
	Slide 22: Today
	Slide 23: Testing is Only as Good as your Oracle
	Slide 24: Oracle: Assertions in Example-Based Tests
	Slide 25: Oracle: The Program Shouldn’t Crash!
	Slide 26: Oracle: Assertions in Source Code
	Slide 27: Assertions catch infections earlier
	Slide 28: What’s wrong with this code?
	Slide 29: Assertions should always be true unless you have a bug in your code
	Slide 30: Assertions in the Wild: Apache Cassandra
	Slide 31: Assertions in the Wild: SQLite & LLVM
	Slide 32: Assertions in the Wild: Firefox
	Slide 33: 🏗️ Activity: Setup
	Slide 34: 🐛 Activity: Write tests to find the bugs

