Software Quality

17-313: Foundations of Software Engineering
https://cmu-313.qithub.io

Michael Hilton and Chris Timperley
Fall 2025

Sources:
e Effective Software Testing: A developer's guide. Maurizio Aniche
e Software Quality and Testing - TU Delft
e Introduction to Combinatorial Testing. Rick Kuhn

Managing Technical Debt. Ipek Ozkaya. CMU SE|

S3D sens veparimen st

University

https://cmu-313.github.io/
https://cmu-313.github.io/
https://cmu-313.github.io/

Administrivia

« Mid-semester grades will be posted tonight
« Exam grades will be posted to gradescope

* Final Exam:
* Friday, December 12, 2025 08:30am - 11:30am

Kl
34
I
50 60 70 80

Retrospective Results - Keep Doing

In-class activities

« Application exams (not recall exams)
Stories
Recitation Team Activities

Retrospective Results - Start Doing

Reminders to fill out the teamwork survey
“Punish members not doing any work for sprints”

Adding more breaks and rests so we are able to process more information
because after while it becomes overwhelming/draining

this is broad but the slack is pretty dead just because it's pretty intimidating
to beg for help in front of everyone

would it be possible to post the general calendar and the assignment due
dates earlier? the instructions don't necessarily need to be posted, but a
general idea either on canvas or on the website of when
checkpoints/deliverables would be due would be amazing!

Retrospective Results - Stop Doing

- The recitations have been kinda lackluster...This is often
due to software issues beyond their control, but it makes
for a sucky environment.

« Don't have copy and paste submissions on gradescope for
long paragraphs

« Should stop doing participation points

« Vague and subjective responses to specific student
guestions

Learning Goals

Understand the concepts of software quality and technical
debt

Reflect on personal experiences of technical debt

Learn best practices for proactively ensuring quality

Learn techniques for creating functional tests

Explain the importance of technical debt management
Learn techniques for managing technical debt

Ca rnegie

Mellon
University

Software Quality

Internal Quality External Quality

* |s the code well structured? « Does the software crash?
* |s the code understandable? « Does it meet the requirements?
« How well documented? * Is the Ul well designed?

Carnegie

Mellore
University

T t []
MPEROR UM BEw

Assuring external quality = N

“ 8 enuln

[ERC

Mellon
University

Something went wrong

Restart this Xbox

| Troubleshoot
n Reset or update this Xbox

System Error: E205 00000000 00000000

More Information: xbow.com/sboxone/startupermor

Carnegie
Mellon :

Terminology

Failure:

“Deviation of the component or system
from its expected delivery, service or
result”

“Manifested inability of a system to
perform required function”

Ca rnegie

Mellon
University

Terminology

Fault / Defect:

“Flaw in component or system that can cause the component or
system to fail to perform its required function”

“A defect, if encountered during execution, may cause a failure of
the component or system”

Ca rnegie

Mellon
University

Terminology

Error:

“A human action that produces an incorrect result”

Carnegie

Mellon
University

Terminology

Failure:

Manifested inability of a system to perform
required function.

Defect (fault): h
missing / incorrect code > Bug
Error (mistake)
human action producing fault)

And thus:

Testing: Attempt to trigger failures
Debugging: Attempt to find faults given a failure

Carnegie

Mellon
University

Principles of Testing #1:
Avoid the absence of defects tallacy

Testing shows the presence of defects

Testing does not show the absence of defects!
“no test team can achieve 100% defect detection
effectiveness”

Effective Software Testing: A developer's guide. Maurizio Aniche

Carnegie

Mellon
University

Principles of Testing #2:
Exhaustive testing is impossible

1 def 1s_valid_email(email: str) ->

o A simp|e function. 1 All oceans dry All tests done
: : ' ~8 billion years
Input, string, max. 26 All plants dead
lowercase characters |

ife Cycle
+ symbols (@, ., _,-) of the Sun

Gradua| Warming

e Assume we can use 1
zettaFLOPS: 102 L
teStS per Second In Billions of Years (approx.)

Effective Software Testing: A developer's guide. Maurizio Aniche

ss Software and Societa Ca rnegie

Systems Department P"'ll‘!lﬂll .
. University

Principles of Testing #3:
Start testing early

To let tests guide design

To get feedback as early as possible

To find bugs when they are cheapest to fix
To find bugs when have caused least damage

Effective Software Testing: A developer's guide. Maurizio Aniche

Carnegie

Mellon

University

Principles of Testing #4.
Defects are usually clustered

“Hot” components requiring frequent change, bad habits,
poor developers, tricky logic, business uncertainty,
innovative, size, ... AT AR Y00 LORKING On?

Use as heuristic to focus test effort il oo o

THE PROBLEMS I CREATED \JHEN
LTREDTO FiX THE PROBLEMS
I CREATED WHEN...

/

-

Effective Software Testing: A developer's guide. Maurizio Aniche

Ca rnegie

Mellon

University

Principles of Testing #5:
The pesticide paradox

“Every method you use to prevent or find bugs leaves a residue of
subtler bugs against which those methods are ineffectual.”

Re-running the same test suite again and again on a
changing program gives a false sense of security
Variation in testing

Effective Software Testing: A developer's guide. Maurizio Aniche

Carnegie

Mellon

University

Principles of Testing #6:
Testing is context-dependent

HANDS-ON
MOBILE APP

TESTING HOW SAFE IS s
SAFE ENOUGH? GAME

Measuring and Predicting TESTING
Autonomous Vehicle Safety ’ ALL IN ONE

AGUICE FOR SOFTWARE TESTERS
AND ANYONE INVOLVED IN THE MORILE APS : _,v‘“~ & ,.lu-,- .\J:‘,
s wWd
2% s \ ‘)3‘
£
&
4
FXE 4 ”
& > =]
2

Effective Software Testing: A developer's guids

: S5y ~
oftware and S =l Y wr’o Carnegie
SSD rstems De |.|J|rr| rnr Mellon

University

lllllll

Principles of Testing #7:
Verification is not validation

Verification
VERIFICATION VALIDATION
Does the software system meet the "
requirements specifications?
Are we building the software
right?

Validation

Does the software system meet the
user's real needs?

Are we building the right

SOftwa re? Credit: Philip Koopman

Effective Software Testing: A developer's guide. Maurizio Aniche

Ca rnegie

Mellon

University

How to create tests?

Test design techniques

« Opportunistic/exploratory testing: Add some unit tests, without much
planning
- Specification-based testing ("black box"): Derive test cases from
specifications
« Boundary value analysis
« Equivalence classes
« Combinatorial testing
« Random testing
« Structural testing ("white box"): Derive test cases to cover implementation
paths
» Line coverage, branch coverage

Ca rnegie

Mellon
University

Specification Testing

Tests are based on the specification
Advantages:

Avoids implementation bias

Robust to changes in the implementation

Tests don't require familiarity with the code

Tests can be developed before the implementation

Carnegie

Mellon
University

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
i B
18
19

mnmnn

Compute the price of a bus ride:

mun

Children under 2 ride for free.

Children under 18 and senior citizens over 65 pay half the fare

All others pay the full fare of $3.

On weekdays (Monday to Friday), between 7am and 9am and

between 4pm and 6pm, a peak surcharge of $1.5 is added

to the fare.

During weekends (Saturday and Sunday), there is a flat rate

of $2 for all riders, except for children under 2.

Short trips under 5 minutes during off-peak times are free,

except on weekends.

If the trip occurs on a public holiday, a special holiday surcharge
of $2 is added, ignoring other surcharges and the weekend flat rate.

def bus_ticket_price(age: int,

ride _datetime: datetime,
ride_duration: int,
is_public_holiday: bool) -> float:

0 5
AT e
{ Al TeI e

Mellon
University

What about exhaustive testing?

Idea: Try all values!

age:int (2-117)years

datetime: DateTime (hh:mm + M/D/Y)
rideTime: int (in minutes, 1 - 2 Hours)
is_public_holiday: bool (2 values)

116 x 1440 (minutes per day) x 1826 (days in the next 5 years)
X 120 (ride time) x 2

~ 72 Billion test cases

Carnegie

Mellon

University

What about exhaustive testing?

Exhaustive testing is usually impractical - even for trivially
small problem

Key problem: choosing test suite

Small enough to finish in a useful amount of time
Large enough to provide a useful amount of validation

Alternative: Heuristics

Carnegie

Mellon
University

Equivalence Partitioning

|dentify sets with same behavior (equivalence class)
Try one input from each set

Equivalence classes derived from specifications (e.g.,
cases, input ranges, error conditions, fault models)
Requires domain-knowledge

Carnegie

Mellon
University

Example: Equivalence Classes?

1 Sl
2 Compute the price of a bus ride:
3 - Children under 2 ride for free.
4 - Children under 18 and senior citizens over 65 pay half the fare
5 - All others pay the full fare of $3.
6 - On weekdays (Monday to Friday), between 7am and 9am and
7 between 4pm and 6pm, a peak surcharge of $1.5 is added
8 to the fare.
9 - uring weekends (Saturday and Sunday), there is a flat rate
10 of $2 for all riders, except for children under 2.
11 - Short trips under 5 minutes during off-peak times are free,
12 except on weekends.
13 - If the trip occurs on a public holiday, a special holiday surcharge
14 of $2 is added, ignoring other surcharges and the weekend flat rate.
15 | “"*
16 def bus_ticket_price(age: int,
17 ride_datetime: datetime,
18 ride_duration: int,
19 is_public_holiday: bool) -> float:

il &
Carne;

}-_]1:‘”[][
Uni

Boundary-value analysis

Key Insight: Errors often occur at the boundaries of a variable
value

For each variable, select:
minimum,
min+1,
medium,
max-1,
maximum:;
possibly also invalid values min-1, max+1

Ca rnegie

Mellon
University

W N -

Boundary-value analysis

Compute the price of a bus ride:
- Children under 2 ride for free.
- Children under 18 and senior citizens over 65 pay half the fare
- All others pay the full fare of $3.
On weekdays (Monday to Friday), between 7am and 9am and
between 4pm and 6pm, a peak surcharge of $1.5 is added
to the fare.
- During weekends (Saturday and Sunday), there is a flat rate
of $2 for all riders, except for children under 2.
Short trips under 5 minutes during off-peak times are free,
except on weekends.
- If the trip occurs on a public holiday, a special holiday surcharge

"o

of $2 is added, ignoring other surcharges and the weekend flat rate.

def bus_ticket_price(age: int,
ride_datetime: datetime,
ride_duration: int,
is_public_holiday: bool) -> float:

Variable

Domains

age

<2, [2,17],
[18,65], >65

ride datetime

weekdays peak
and off-peak,
weekends peak

and off-peak
ride_duration <5, >=5
is_public_holiday | F, T

Carnegi

Mellon
Uni

Pairwise testing

Key Insight: some problems only occur as the result of
an interaction between parameters/components

Examples of interactions:
- The bug occurs for senior citizens traveling on weekends (pairwise

interaction)
The bug occurs for senior citizens traveling on weekends during
peak hours (3-way interaction)
The bug occurs for adults traveling long trips during public holidays
that are weekends. (4-way interaction)

Claim: Considering pairwise interactions finds about 50% to

90% of defects

Carnegie

Mellon
University

When to create and run tests?

The V-Model

Requirements System validation plan System testing /

analysis testing in production

Architectural design frr - s rrrrredrnnnen Integration testing

AN Z

, Unit test plan _)
Low-level design - === Unit testing

Implementation

Y

fime

Carnegie

Mellon
University

Group Activity

We are taking over the reigns of NodeBB

Come up with a testing protocol for the system
- What should we prioritize testing?
How should we test? (run it? unit test?...?)
When should we write new tests?
How do we know when to stop testing?
If we discover a bug, what then?

If we spend all our time testing... how will we ever add new features?!

Ca rnegie

Mellon

University

Intermission

https.//www.destroyallsoftware.com/talks/wat

Wat

@garybernhardt

Software and Societa Earm‘g e
Mellon

Systems Department ! .
' P University

https://www.destroyallsoftware.com/talks/wat
https://www.destroyallsoftware.com/talks/wat

T DON'T
UNDERSTAND
WHY IT TAKES h
50 LONG To
ADD A NEW
wiNDOW.

TECHNICAL DEBT

Technical Debt

A better analogy?: Pollution

AQI Basics for Ozone and Particle Pollution

Daily AQI Color Levels of Concern Values of Index Description of Air Quality
Yellow Moderate 51to 100 Air quality is acceptable. However, there may be a risk for some
people, particularly those who are unusually sensitive to air
pollution.

Orange Unhealthy for Sensitive Members of sensitive groups may experience health effects. The
Groups general public is less likely to be affected.

Unhealthy 151 to 200 | Some members of the general public may experience health effects;
members of sensitive groups may experience more serious health
effects.

Purple Very Unhealthy 201 to 300 health effects

Maroon Hazardous 301 and higher Health warning of emergency conditions: everyone is more likely to
be affected.

https://www.airnow.gov/aqi/aqi-basics

Carnegie

Mellon
University

Technical debt

Any software system has
a certain amount of
essential complexity

Cruft causes changes
required to do its job...

to take more effort

a & @
a A

... but most systems

contain cruft that makes it
harder to understand.

The technical debt metaphor treats the
cruft as a debt, whose interest payments
are the extra effort these changes require.

https://martinfowler.com/bliki/TechnicalDebt.htm/

Carnegie
Mellon
Ln

Internal quality makes it easier to add
features

the cruft means new features

If we compare one take longer to build

system with o lot of

S9000098 S000E8 908 S9N00E0
cruft...

this extra time and effort is
the cost of the cruft, paid
with each new feature

R

+
+
I
g
+
-
+
-
+

T rrdrr ety
R - o

+

PEL At e
Fhrtt bt

R

R S
R e T =

...to an equivalent

free of cruft, features can be
added more quickly

Carnegie

Mellorr
University

Examples of technical debt

Technical Debt != Bad Internal Quality

“In software-intensive systems, technical debt consists of design
or implementation constructs that are expedient in the short
term but that set up a technical context that can make a
future change more costly or impossible. “

“Technical debt is a contingent liability whose impact is limited
to internal system qualities - primarily, but not only,
maintainability and evolvability.”

Managing Technical Debt: Reducing Friction in Software Development. Philippe Kruchten, Robert Nord, Ipek Ozkaya

Carnegie

Mellon
University

High internal quality is an investment

high internal quality

curnulative
functionality

but delivers more rapidly
{ond cheaply) later

software with high internal
quality gets a short initial low internal quality
slow down |

|
|
|
I time

this point occurs in
weeks (not months)

il &
Carnegie

Mellort
University

What actions cause technical debt?

T COULD RESTRUCTURE | | EH, SCREW GoD PRACTICE.
THE PROGRAMS FLOW | | HOW BAD CAN IT BE?

OR ljSE ONE LITTLE goto main_sub3;
'GOTO" INSTEAD. .

\
?}ﬂ j : !? *COMPILE*

Carnegie

Mellon
University

What actions cause technical debt?

Tightly-coupled components

. _ Lack of automated testing
Poorly-specified requirements

. Lack of knowledge
Business pressure

Lack of ownership
Lack of process

. Delayed refactoring
Lack of documentation

Multiple, long-lived
development branches

Carnegie

Melloree
University

Bitrot: Even if your software doesn't
change, it will break over time

{-:nrm‘__‘_r, ie
Mellorgo
University

EVERYONE
CREATES TECHNICAL
DEBT B

Bad: Too much technical debt

Bad code can be demoralizing

Conversations with the client become awkward

o . ;M OkAY WITH THE &I
Team infighting “Giraoe "¢ |
URRENTLY. L=

Turnover and attrition

* Development speed
TAO;AT'S OKAY, THINGS
€ GOING TO Be
° OKAY.
N ‘_& 2T

il &
Carnegie

Mellor
University

How to manage technical debt?

: E‘I\'i-.maging ,
¢ Technical Debt

it

i, A

Managing Technical Debt: Reducing Friction in Software Development.
Philippe Kruchten, Robert Nord, Ipek Ozkaya

Principles of Technical Debt
Management

1. Technical debt is a useful rhetorical concept for dialogue.

2. If you do not incur any form of interest, then you probably do
not have actual technical debt.

All systems have technical debt.

Technical debt must trace to the system.

Technical debtis not synonymous with bad quality.
Architecture technical debt has the highest cost of ownership.
All code matters!

Technical debt has no absolute measure.

Technical debt depends on the future evolution of the system.

© 0o N o U ok~ Ww

Ca rnegie

Mellon
University

When should we reduce technical
debt?

A

Technical Debt Net Liability

Technical Debt Net Asset

Occurrence Awareness Tipping Point Remediation
v v v hJ >
T T2 T3 T4 Time
\ J \ J\ J
Y Y Y
BLISSFUL IGNORANCE y SUFFERING FROM DEBT DEBT-FREE
Y

GETTING VALUE OUT OF DEBT

Managing technical debt

Organizations needs to address the following challenges
continuously:

Recognizing technical debt

Making technical debt visible

Deciding when and how to resolve debt
Living with technical debt

A wobhpo-

Carnegie

Mellon

University

Not all technical debt is the same

Reckless

Prudent

Deliberate

“We don’t have time for
design”

“We must ship now and
deal with consequences

(later)”

Inadvertent

“What’s layering?”

“Now we know how we
should have done it’

https://martinfowler.com/bliki/TechnicalDebtQuadrant.html

Ca rnegie

Mellorss
University

How can we avoid (inadvertent)
technical debt?

Common Anti-Patterns

* Not having a QA process! Or no-one follows it

il &
Carnegie

Mellorto
University

Common Anti-Patterns

* Not having a QA process! Or no-one follows it é

* Bad version control practices

* Everyone commits to the main branch

* Long-lived feature branches COFFENT DATE.

* Huge PRs

AS A PROTECT DRAGS ON, MY GIT (OMMIT
MESSAGES GET LESS AND LESS INFORMATIVE.

Carnegie

Mellort
University

Common Anti-Patterns

* Not having a QA process! Or no-one follows it
* Bad version control practices
* Slow and encumbering QA processes

* changes take forever to get merged

* time could be better spent on new features

Carnegie

Mellor?
University

Common Anti-Patterns

* Not having a QA process! Or no-one follows it
* Bad version control practices

* Slow and encumbering QA processes

* Reliance on repetitive manual labor

* focused on superficial problems rather than structuralones ¢ =

FORGET THINGS IN SECONDS, AND
ARE ALL PRETTY SURE WE ARC
WAY ABOVE AVERAGE

* results may vary (e.g., manual testing)

* mistakes will happen!

- :
Carnegie

Mello

Case Study: Knight Capital

Knightmare: A DevOps
Cautionary Tale

I was speaking at a conference last year on the topics of DevOps, Configuration as Code, and
Continuous Delivery and used the following story to demonstrate the importance making
deployments fully automated and repeatable as part of a DevOps/Continuous Delivery initiative.

Since that conference I have been asked by several people to share the story through my blog.

This story is true — this really happened. This is my telling of the story based on what I have

read (I was not involved in this).

In layman's terms, Knight Capital Group realized a $460 million loss in 45-minutes.
Remember, Knight only has $365 million in cash and equivalents. In 45-minutes Knight
went from being the largest trader in US equities and a major market maker in the

NYSE and NASDAQ to bankrupt.

Ca rnegie
Mellors
University

Summary:

EVERYONE
POOPS

By Taro Gomi

Software Quality is hard

Life involves tradeoffs

il &
Carnegie

Mellon
University

	Slide 1: Software Quality
	Slide 2: Administrivia
	Slide 3: Retrospective Results – Keep Doing
	Slide 4: Retrospective Results – Start Doing
	Slide 5: Retrospective Results – Stop Doing
	Slide 6
	Slide 8: Learning Goals
	Slide 9: Software Quality
	Slide 10: Internal Quality
	Slide 11: Testing
	Slide 12
	Slide 13: Terminology
	Slide 14: Terminology
	Slide 15: Terminology
	Slide 16: Terminology
	Slide 17: Principles of Testing #1: Avoid the absence of defects fallacy
	Slide 18: Principles of Testing #2: Exhaustive testing is impossible
	Slide 19: Principles of Testing #3: Start testing early
	Slide 20: Principles of Testing #4: Defects are usually clustered
	Slide 21: Principles of Testing #5: The pesticide paradox
	Slide 22: Principles of Testing #6: Testing is context-dependent
	Slide 23: Principles of Testing #7: Verification is not validation
	Slide 24: How to create tests?
	Slide 25: Test design techniques
	Slide 26: Specification Testing
	Slide 27
	Slide 28: What about exhaustive testing?
	Slide 29: What about exhaustive testing?
	Slide 30: Equivalence Partitioning
	Slide 31: Example: Equivalence Classes?
	Slide 32: Boundary-value analysis
	Slide 33: Boundary-value analysis
	Slide 34: Pairwise testing
	Slide 35: When to create and run tests?
	Slide 36: The V-Model
	Slide 37: Group Activity
	Slide 40: Intermission
	Slide 41: Technical Debt
	Slide 42: A better analogy?: Pollution
	Slide 43: Technical debt
	Slide 44: Internal quality makes it easier to add features
	Slide 45: Examples of technical debt
	Slide 46: Technical Debt != Bad Internal Quality
	Slide 47: High internal quality is an investment
	Slide 48: What actions cause technical debt?
	Slide 49: What actions cause technical debt?
	Slide 50: Bitrot: Even if your software doesn’t change, it will break over time
	Slide 51
	Slide 52: Bad: Too much technical debt
	Slide 53: How to manage technical debt?
	Slide 54: Principles of Technical Debt Management
	Slide 55: When should we reduce technical debt?
	Slide 56
	Slide 57: Managing technical debt
	Slide 58: Not all technical debt is the same
	Slide 59: How can we avoid (inadvertent) technical debt?
	Slide 60: Common Anti-Patterns
	Slide 61: Common Anti-Patterns
	Slide 62: Common Anti-Patterns
	Slide 63: Common Anti-Patterns
	Slide 64: Case Study: Knight Capital
	Slide 65: Summary:

