Testing:
From Examples to Properties

17-313: Foundations of Software Engineering
https://cmu-313.github.io

Michael Hilton and Chris Timperley
Fall 2025

Software and Soc t | Carnegie
Ssl) Systems D epar tm Mellon

University

https://cmu-313.github.io/
https://cmu-313.github.io/
https://cmu-313.github.io/

Administrivia

* No class next Tuesday (Democracy Day)

3 n
Software and Societal (J:‘dl negie
Systems Department Mellon

University

Recap: Setup
« Everyone should participate on their laptop

* Open CMU-313/Pierogl/0O in Codespaces
* https://github.com/CMU-313/PieroglO

» Create a branch for this activity
- git checkout -b andrew-id/tests
e git push -u origin andrew-id/tests

« Add your branch name to the spreadsheet
- http://bit.ly/3WqXBBe PIEROG)/O

hl = L
Software and Societal l(\;/[alﬁlegle
Systems Department elion

University

https://github.com/CMU-313/PierogIO
https://github.com/CMU-313/PierogIO
https://github.com/CMU-313/PierogIO
https://github.com/CMU-313/PierogIO
https://github.com/CMU-313/PierogIO
https://github.com/CMU-313/PierogIO
https://github.com/CMU-313/PierogIO
http://bit.ly/3WqXBBe
http://bit.ly/3WqXBBe
http://bit.ly/3WqXBBe
http://bit.ly/3WqXBBe

£, Recap: Write tests to find bugs

* Find bugs in the implementation by writing test cases
* “npm run test” to run the tests (or hit the run test button in the IDE)

* Fix any bugs that you find!
- every bug should have a corresponding regression test
- only start fixing the bug once you have written the test

 Push the changes to your branch to GitHub
« git push -u origin andrew-id/tests

« When you have written at least one test, fixed a bug, and pushed
your changes to GitHub, update the spreadsheet

Al = L
Software and Societal Car negie
Systems Department Mellon

University

@ Activity: Let’s break things

* Now, you will inject a silent bug into someone else’s code that IS
NOT caught by the test suite (i.e., the tests don’t fail)

 Use the spreadsheet to takeover someone else’s branch

« Mark as “In Progress” when you claim it
« Mark as “Done” when you have added a silent bug

« Switch to that person’s branch
« git pull
« git checkout {the-branch-name}

- If you finish early, work on a second, unclaimed branch!

hl = .
Software and Societal halllnegle
Systems Department elion

University

€ Activity: Bolster your tests + asserts

« Go to any branch marked as “Done” and pull the breaking
changes
« git checkout {your-branch}
« git pull

« Without fixing the code, can you add an assertion to the
program or the tests that catches the bug?

Carnegie
Soft and Soc | 8
SSD Syste th Depar tm t Mellon

University

How can we measure the
strength of our tests?

Mutation Testing measures test adequacy

* Faults (known as mutations) are automatically planted into your
code, and your tests are then run

« mutation score measures how many mutants are “killed” by your tests
 good test suites have higher mutation scores

Source Code
> l GOOD
- e
AR—>
_»l’ BAD

hl = L
Software and Societal l(\;fldlﬁlegle
Systems Department '1e1101

INJECT
BUGS

University

Mutations mimic common mistakes

False Returns - ‘) pitest.org

Carnegie

53 Software and Societal %-?e!l()n”

Systems Department

Mutations mimic common mistakes

1: int getYear(int days) {

2: int year = 1989;

3: while (days > 365) {

4 if (isLeapYear(year)) { if (days > 366) if (days > 366) { return year;
5: if (days > 366) { if (days >= 366) days -= 366; return 0;
6 days -= 366; year += 1;

/ year += 1; — int year = 1980; } year += 1;
§ } int year = 1981;

9 } else { if (days > 366)
10: days -= 365; if (!(days > 366))
11 year += 1; int year = 1980; year += 1;
12:) int year = -1981; year -= 1;
13: }
14: return year;
15: }

Carnegie

83 Software and Societal %‘?e!]{n

Systems Department

Pros and Cons: Mutation Testing

* [t measures the ability of your test suite to find bugs!

« warning: it's only as good as your set of mutations
« small or unrepresentative mutant sets don't tell you much

* [t doesn’t tell you about errors of omission
« E.g., missing validation

* [t can be extremely expensive for large systems
« we may need to execute the whole test suite for each mutant
« useful for small, cheap, and fast unit tests
 run it on your PRs — not the whole codebase

Carnegie

Software and Societal Mellon
Systems Department elion
University

Transparent Testing (Whitebox)

- Observation: Many of you first read the code,
then designed an input to hit the buggy line.

| | Lt
« Why this can be tricky ... =) B

* You may not have source (libraries/services)

 Bias: knowing the code nudges you to test what you can
see, not what users do.

« Commission vs. omission: easy to check the wrong
thing; hard to notice missing checks.

« Reachability: crafting inputs to deep / rare paths is hard
(state, constraints).

image credit: GPT-5

Al = L
Software and Societal Car negie
Systems Department Mellon

University

Opaque Testing (Blackbox)

* Write tests without peeking at the code.
Design based on inputs and expected
outputs (e.g., from APIs, documentation) OPAQUE

* Techniques:

* partition inputs into equivalence classes and pick
representatives from each one

« explore boundary values (e.g., minimum, just-below,
just-above, max)

* try error cases and negative inputs (e.g., empty,
null, NaN, duplicates)

image credit: GPT-5

Al = L
Software and Societal Car negie
Systems Department Mellon

University

@) Let’s Test Smaller Targets

« The total method is complex and has lots of dependencies!
- deliveryFee, subtotal, tax, discounts

- If total fails, there could be a bug in any of these dependencies or
in the code that ties them together (i.e., the code in total)
» this makes it hard to debug failures (we have more lines to go through)
« good tests should fail for a single reason

* Instead, we can test those dependencies directly
- fewer reasons for failure; fewer lines to debug / inspect
* easier to write tests

Software and Societal glalﬂlegle
Systems Department elion

University

Translucent Testing (Greybox)

* If we have access to the code, we can
measure properties of the code without
looking directly at the code itself

* i.e., coverage, mutation score

TRANSLUCENT

* We can use those measures to assess test
adequacy and help to find weaknesses in ——

File

r m v8

| | I li
% Stmts | % Branch | % Funcs | % Lines |
It

|
. |
| | | |
Our eS eS|gnS ALl files | 98.22 | 91.48 | 100 | 98.22 |
delivery.js | 97.33 | 88.88 | lee | 97.33 |
discounts.js | 96.15 | 88.88 | lee | 96.15 |
subtotal.js | 100 | 100 | 100 | 100 |
tax.js | 100 | 100 | 100 | 100 |
|
|

100 | 100 | 100 | 100 |
I I | I-

- In practice, we often do a combination of ==
all types of testing

image credit: GPT-5

Al = L
Software and Societal Car negie
Systems Department Mellon

University

Let’'s test different order contexts

* Let's test total using the same order in different contexts

i x 144

« Tier: "“quest” | "regular” | “vip

« Zone: “local” | “outer”

« Rush: true | false

« Coupon: null |”"PIEROGI-BOGO” | "FIRST10”
« Qur order

* One 6-pack of Potato pierogies (P6-POTATO)

« We can use a table-driven test (. forEach) and a helper
function (createContext) to create them with minimal code!

~ 5
Software and Societal Car negie
Systems Department Mellon

University

What if we automatically
generate inputs?

Problem: We need an Oracle!

« An oracle decides if behavior is correct for a given input

- strong oracles catch bugs that weak oracles miss
» designing strong oracles is difficult and often the bottleneck

1@

Output (e

Software and Societal
Systems Department

Carnegie

Mellon
University

Property-Based Testing replaces single examples with
properties that hold for many inputs

3 n
Software and Societal (J:dl negie
Systems Department Mellon

University

Property-Based Testing replaces single examples with
properties that hold for many inputs

const ys = doubleBogosort(xs);
‘\ We want to test our implementation of an
amazing sorting algorithm

3 n
Software and Societal (mell negie
Systems Department Mellon

University

Property-Based Testing replaces single examples with
properties that hold for many inputs

fc.array(fc.integer())

,\ We use a generator to automatically
explore inputs to our function under test

3 n
Software and Societal (mell negie
Systems Department Mellon

University

Property-Based Testing replaces single examples with
properties that hold for many inputs

), xs =g {
const ys = doubleBogosort(xs); \

We provide a function that checks that a
} property holds under a given test input, xs

Al = L
Software and Societal (jdl negie
Systems Department Mellon

University

Property-Based Testing replaces single examples with
properties that hold for many inputs

function isNonDecreasing(values: number[]): boolean {
for (let i = 1; i < values.length; i++) {
if (values[i - 1] > values[i]) return false;

}

return true;

}

return nonDecreasing(ys) ;& In this case, our property checks that array
elements are non-decreasing

Carnegie

Software and Societal -
S3 Mellon

Systems Department : .
University

Common Properties: Preservation

« Something stays the same or within allowed bounds

» Sorting: same multiset of elements (i.e., nothing is added or dropped)
 Sets and strings: |AB| = |A| + |B]|

- Cart totals: never negative

« Cart: membership tier discount never increases price!

fc.assert(fc.property(fc.array(Item), fc.tuple(Tier,Tier), (items,[tLow,tHigh]) => {
const order = ["guest", "bronze", "silver", "gold"];
const low = computeTotal(items, tLow);
const high = computeTotal(items, tHigh);
return order.indexOf(tHigh) >= order.indexOf(tLow) ? high <= low : true;

1))

Carnegie

Software and Societal ; 5
Systems Department Mellon

University

Common Properties: Metamorphic

 Property holds under input transformations

» Sorting: reversing/shuffling input does not change the sorted output
 Cart: reordering items does not change the total

» JSON parsing: reordering object keys produces the same parsed result
 Shipping: changing address / ZIP doesn't affect the price

fc.assert(fc.property(fc.array(fc.integer()), xs => {
const a = doubleBogosort(xs);
const b = doubleBogosort(xs.reverse());
return a.length === b.length && a.every((v,i)=> v === b[i]);

1))

Carnegie

Software and Societal
Systems Department

Mellon

University

Common Properties: Differential

- Two implementations (or versions) agree on outputs and errors
« Slow but trusted reference solution vs. optimized version
 Old vs. new implementation after refactoring
 Third-party library vs. your code

fc.assert(fc.property(fc.array(fc.integer()), xs => {
const a = doubleBogosort(xs);
const b = radixSort(xs);
return a.length === b.length && a.every((v,i)=> v ==

1))

b[i]);

RUA L
Software and Societal (mell negie
Systems Department Mellon

University

Activity: Devise a set of properties

« Switch to the “properties” tab of the spreadsheet
http://bit.ly/3WgXBBe

 Create a new branch (from main) for property-based testing and
add your branch name to the spreadsheet

« git checkout main
« git checkout -b andrew-id/properties
« git push -u ortigin andrew-id/properties

Software and Soc t | (Jﬂlﬁlf‘glf‘
SsDSytmDp i Mellon

University

http://bit.ly/3WqXBBe
http://bit.ly/3WqXBBe
http://bit.ly/3WqXBBe
http://bit.ly/3WqXBBe

Activity: Devise a set of properties

 Try to come up with a set of properties that you could test for the
codebase (e.g., Preservation, Metamorphic, Differential)
« discuss with your neighbors!

» Add your property ideas to the implementation code
« either as part of the docstring or as a comment

* Push your changes to GitHub and update the spreadsheet

Al = .
SS Software and Societal Car negie

Systems Department Me!lon .
University

/[**

* ok % ok K ok ok % ok % ok K F F * F Kk ok F * * *

. SUBTOTAL: Base item prices plus add-ons

- Add-ons: sour cream ($0.99), fried onion ($1.49), bacon bits ($1.99)
- Add-on prices are per pack (multiplied by quantity)

. DISCOUNTS:

- Volume discounts: Applied automatically based on quantity per item
* 12-pack: 5% off
« 24-pack: 10% off

- Coupon codes (see below)

. DELIVERY:

- Local zone (©-10 km): $3.99
- Quter zone (16+ km): $6.99
- Rush delivery: +$82.99 surcharge
- Free delivery thresholds (based on discounted subtotal):
« Guest: $50 or more
- Regular: $40 or more
« VIP: $30 or more
- When free delivery applies, only rush fee is charged (if applicable)

. TAX:

- 8% sales tax on hot items only
- Frozen items are tax-exempt (0% tax)
- Delivery fee is taxable only if the order contains any hot items

Software and Societal

Carnegie

Mellon

S3

Systems Department

University

Key Takeaways

 Test adequacy is measurable (coverage, mutation score)

- Mutation testing is great for cheap, fast unit tests

« White/black/grey-box are complementary, not competing

* Property-based tests exercise many inputs with one property

« Strong oracles are the bottleneck: use Preservation,
Metamorphic, Differential patterns

Carnegie

Software and Societal -
S3 Mellon

Systems Department : .
University

	Title
	Slide 1: Testing: From Examples to Properties

	Administrivia
	Slide 2: Administrivia

	Opening
	Slide 3: 🏗️ Recap: Setup
	Slide 4: 🐛 Recap: Write tests to find bugs
	Slide 5: 😈 Activity: Let’s break things
	Slide 6: 🛡️ Activity: Bolster your tests + asserts

	Mutation Testing
	Slide 7: How can we measure the strength of our tests?
	Slide 8: Mutation Testing measures test adequacy
	Slide 9: Mutations mimic common mistakes
	Slide 10: Mutations mimic common mistakes
	Slide 11: Pros and Cons: Mutation Testing
	Slide 12: Transparent Testing (Whitebox)
	Slide 13: Opaque Testing (Blackbox)
	Slide 14: 🎯 Let’s Test Smaller Targets
	Slide 15: Translucent Testing (Greybox)
	Slide 16: ✅ Let’s test different order contexts

	Property-Based Testing
	Slide 17: What if we automatically generate inputs? 🎲
	Slide 18: Problem: We need an Oracle!
	Slide 19: Property-Based Testing replaces single examples with properties that hold for many inputs
	Slide 21: Property-Based Testing replaces single examples with properties that hold for many inputs
	Slide 22: Property-Based Testing replaces single examples with properties that hold for many inputs
	Slide 23: Property-Based Testing replaces single examples with properties that hold for many inputs
	Slide 24: Property-Based Testing replaces single examples with properties that hold for many inputs
	Slide 29: Common Properties: Preservation
	Slide 30: Common Properties: Metamorphic
	Slide 31: Common Properties: Differential
	Slide 32: Activity: Devise a set of properties
	Slide 33: Activity: Devise a set of properties
	Slide 34
	Slide 37: Key Takeaways

