
Testing:
From Examples to Properties

17-313: Foundations of Software Engineering

https://cmu-313.github.io

Michael Hilton and Chris Timperley

Fall 2025

https://cmu-313.github.io/
https://cmu-313.github.io/
https://cmu-313.github.io/

Administrivia

• No class next Tuesday (Democracy Day)

Recap: Setup

• Everyone should participate on their laptop

• Open CMU-313/PierogI/O in Codespaces
• https://github.com/CMU-313/PierogIO

• Create a branch for this activity
• git checkout -b andrew-id/tests

• git push -u origin andrew-id/tests

• Add your branch name to the spreadsheet

•http://bit.ly/3WqXBBe

https://github.com/CMU-313/PierogIO
https://github.com/CMU-313/PierogIO
https://github.com/CMU-313/PierogIO
https://github.com/CMU-313/PierogIO
https://github.com/CMU-313/PierogIO
https://github.com/CMU-313/PierogIO
https://github.com/CMU-313/PierogIO
http://bit.ly/3WqXBBe
http://bit.ly/3WqXBBe
http://bit.ly/3WqXBBe
http://bit.ly/3WqXBBe

Recap: Write tests to find bugs

• Find bugs in the implementation by writing test cases
• “npm run test” to run the tests (or hit the run test button in the IDE)

• Fix any bugs that you find!
• every bug should have a corresponding regression test

• only start fixing the bug once you have written the test

• Push the changes to your branch to GitHub

• git push -u origin andrew-id/tests

• When you have written at least one test, fixed a bug, and pushed
your changes to GitHub, update the spreadsheet

Activity: Let’s break things

• Now, you will inject a silent bug into someone else’s code that IS
NOT caught by the test suite (i.e., the tests don’t fail)

• Use the spreadsheet to takeover someone else’s branch

• Mark as “In Progress” when you claim it

• Mark as “Done” when you have added a silent bug

• Switch to that person’s branch
• git pull
• git checkout {the-branch-name}

• If you finish early, work on a second, unclaimed branch!

Activity: Bolster your tests + asserts

• Go to any branch marked as “Done” and pull the breaking
changes

• git checkout {your-branch}
• git pull

• Without fixing the code, can you add an assertion to the
program or the tests that catches the bug?

How can we measure the
strength of our tests?

Mutation Testing measures test adequacy

• Faults (known as mutations) are automatically planted into your
code, and your tests are then run

• mutation score measures how many mutants are “killed” by your tests

• good test suites have higher mutation scores

Mutations mimic common mistakes

Mutations mimic common mistakes

Pros and Cons: Mutation Testing

• It measures the ability of your test suite to find bugs!

• warning: it’s only as good as your set of mutations

• small or unrepresentative mutant sets don’t tell you much

• It doesn’t tell you about errors of omission
• E.g., missing validation

• It can be extremely expensive for large systems
• we may need to execute the whole test suite for each mutant

• useful for small, cheap, and fast unit tests

• run it on your PRs — not the whole codebase

Transparent Testing (Whitebox)

• Observation: Many of you first read the code,
then designed an input to hit the buggy line.

• Why this can be tricky ...

• You may not have source (libraries/services)

• Bias: knowing the code nudges you to test what you can
see, not what users do.

• Commission vs. omission: easy to check the wrong
thing; hard to notice missing checks.

• Reachability: crafting inputs to deep / rare paths is hard
(state, constraints).

image credit: GPT-5

Opaque Testing (Blackbox)

• Write tests without peeking at the code.
Design based on inputs and expected
outputs (e.g., from APIs, documentation)

• Techniques:
• partition inputs into equivalence classes and pick

representatives from each one

• explore boundary values (e.g., minimum, just-below,
just-above, max)

• try error cases and negative inputs (e.g., empty,
null, NaN, duplicates)

• ...
image credit: GPT-5

 Let’s Test Smaller Targets

• The total method is complex and has lots of dependencies!

• deliveryFee, subtotal, tax, discounts

• If total fails, there could be a bug in any of these dependencies or
in the code that ties them together (i.e., the code in total)
• this makes it hard to debug failures (we have more lines to go through)

• good tests should fail for a single reason

• Instead, we can test those dependencies directly
• fewer reasons for failure; fewer lines to debug / inspect

• easier to write tests

Translucent Testing (Greybox)

• If we have access to the code, we can
measure properties of the code without
looking directly at the code itself
• i.e., coverage, mutation score

• We can use those measures to assess test
adequacy and help to find weaknesses in
our test designs

• In practice, we often do a combination of
all types of testing

image credit: GPT-5

 Let’s test different order contexts

• Let’s test total using the same order in different contexts

• Tier: “guest” | ”regular” | “vip”
• Zone: “local” | “outer”

• Rush: true | false
• Coupon: null |”PIEROGI-BOGO” | ”FIRST10”

• Our order
• One 6-pack of Potato pierogies (P6-POTATO)

• We can use a table-driven test (.forEach) and a helper
function (createContext) to create them with minimal code!

What if we automatically
generate inputs?

Problem: We need an Oracle!

• An oracle decides if behavior is correct for a given input

• strong oracles catch bugs that weak oracles miss

• designing strong oracles is difficult and often the bottleneck

Property-Based Testing replaces single examples with
properties that hold for many inputs

Property-Based Testing replaces single examples with
properties that hold for many inputs

function isNonDecreasing(values: number[]): boolean {
 for (let i = 1; i < values.length; i++) {
 if (values[i - 1] > values[i]) return false;
 }
 return true;
}

fc.assert(fc.property(fc.array(fc.integer()), xs => {
 const ys = doubleBogosort(xs);
 return nonDecreasing(ys);
}));

We want to test our implementation of an
amazing sorting algorithm

Property-Based Testing replaces single examples with
properties that hold for many inputs

function isNonDecreasing(values: number[]): boolean {
 for (let i = 1; i < values.length; i++) {
 if (values[i - 1] > values[i]) return false;
 }
 return true;
}

fc.assert(fc.property(fc.array(fc.integer()), xs => {
 const ys = doubleBogosort(xs);
 return nonDecreasing(ys);
}));

We use a generator to automatically
explore inputs to our function under test

Property-Based Testing replaces single examples with
properties that hold for many inputs

function isNonDecreasing(values: number[]): boolean {
 for (let i = 1; i < values.length; i++) {
 if (values[i - 1] > values[i]) return false;
 }
 return true;
}

fc.assert(fc.property(fc.array(fc.integer()), xs => {
 const ys = doubleBogosort(xs);
 return nonDecreasing(ys);
}));

We provide a function that checks that a
property holds under a given test input, xs

Property-Based Testing replaces single examples with
properties that hold for many inputs

function isNonDecreasing(values: number[]): boolean {
 for (let i = 1; i < values.length; i++) {
 if (values[i - 1] > values[i]) return false;
 }
 return true;
}

fc.assert(fc.property(fc.array(fc.integer()), xs => {
 const ys = doubleBogosort(xs);
 return nonDecreasing(ys);
}));

In this case, our property checks that array
elements are non-decreasing

Common Properties: Preservation

• Something stays the same or within allowed bounds

• Sorting: same multiset of elements (i.e., nothing is added or dropped)

• Sets and strings: |AB| = |A| + |B|

• Cart totals: never negative

• Cart: membership tier discount never increases price!

fc.assert(fc.property(fc.array(Item), fc.tuple(Tier,Tier), (items,[tLow,tHigh]) => {
 const order = ["guest","bronze","silver","gold"];
 const low = computeTotal(items, tLow);
 const high = computeTotal(items, tHigh);
 return order.indexOf(tHigh) >= order.indexOf(tLow) ? high <= low : true;
}));

Common Properties: Metamorphic

• Property holds under input transformations

• Sorting: reversing/shuffling input does not change the sorted output

• Cart: reordering items does not change the total

• JSON parsing: reordering object keys produces the same parsed result

• Shipping: changing address / ZIP doesn’t affect the price

fc.assert(fc.property(fc.array(fc.integer()), xs => {
 const a = doubleBogosort(xs);
 const b = doubleBogosort(xs.reverse());
 return a.length === b.length && a.every((v,i)=> v === b[i]);
}));

Common Properties: Differential

• Two implementations (or versions) agree on outputs and errors

• Slow but trusted reference solution vs. optimized version

• Old vs. new implementation after refactoring

• Third-party library vs. your code

fc.assert(fc.property(fc.array(fc.integer()), xs => {
 const a = doubleBogosort(xs);
 const b = radixSort(xs);
 return a.length === b.length && a.every((v,i)=> v === b[i]);
}));

Activity: Devise a set of properties

• Switch to the “properties” tab of the spreadsheet

•http://bit.ly/3WqXBBe

• Create a new branch (from main) for property-based testing and
add your branch name to the spreadsheet

• git checkout main
• git checkout -b andrew-id/properties

• git push -u origin andrew-id/properties

http://bit.ly/3WqXBBe
http://bit.ly/3WqXBBe
http://bit.ly/3WqXBBe
http://bit.ly/3WqXBBe

Activity: Devise a set of properties

• Try to come up with a set of properties that you could test for the
codebase (e.g., Preservation, Metamorphic, Differential)
• discuss with your neighbors!

• Add your property ideas to the implementation code
• either as part of the docstring or as a comment

• Push your changes to GitHub and update the spreadsheet

/**
* 1. SUBTOTAL: Base item prices plus add-ons
* - Add-ons: sour cream ($0.99), fried onion ($1.49), bacon bits ($1.99)
* - Add-on prices are per pack (multiplied by quantity)
* 2. DISCOUNTS:
* - Volume discounts: Applied automatically based on quantity per item
* • 12-pack: 5% off
* • 24-pack: 10% off
* - Coupon codes (see below)
* 3. DELIVERY:
* - Local zone (0-10 km): $3.99
* - Outer zone (10+ km): $6.99
* - Rush delivery: +$2.99 surcharge
* - Free delivery thresholds (based on discounted subtotal):
* • Guest: $50 or more
* • Regular: $40 or more
* • VIP: $30 or more
* - When free delivery applies, only rush fee is charged (if applicable)
* 4. TAX:
* - 8% sales tax on hot items only
* - Frozen items are tax-exempt (0% tax)
* - Delivery fee is taxable only if the order contains any hot items
*/

Key Takeaways

• Test adequacy is measurable (coverage, mutation score)

• Mutation testing is great for cheap, fast unit tests

• White/black/grey-box are complementary, not competing

• Property-based tests exercise many inputs with one property

• Strong oracles are the bottleneck: use Preservation,
Metamorphic, Differential patterns

	Title
	Slide 1: Testing: From Examples to Properties

	Administrivia
	Slide 2: Administrivia

	Opening
	Slide 3: 🏗️ Recap: Setup
	Slide 4: 🐛 Recap: Write tests to find bugs
	Slide 5: 😈 Activity: Let’s break things
	Slide 6: 🛡️ Activity: Bolster your tests + asserts

	Mutation Testing
	Slide 7: How can we measure the strength of our tests?
	Slide 8: Mutation Testing measures test adequacy
	Slide 9: Mutations mimic common mistakes
	Slide 10: Mutations mimic common mistakes
	Slide 11: Pros and Cons: Mutation Testing
	Slide 12: Transparent Testing (Whitebox)
	Slide 13: Opaque Testing (Blackbox)
	Slide 14: 🎯 Let’s Test Smaller Targets
	Slide 15: Translucent Testing (Greybox)
	Slide 16: ✅ Let’s test different order contexts

	Property-Based Testing
	Slide 17: What if we automatically generate inputs? 🎲
	Slide 18: Problem: We need an Oracle!
	Slide 19: Property-Based Testing replaces single examples with properties that hold for many inputs
	Slide 21: Property-Based Testing replaces single examples with properties that hold for many inputs
	Slide 22: Property-Based Testing replaces single examples with properties that hold for many inputs
	Slide 23: Property-Based Testing replaces single examples with properties that hold for many inputs
	Slide 24: Property-Based Testing replaces single examples with properties that hold for many inputs
	Slide 29: Common Properties: Preservation
	Slide 30: Common Properties: Metamorphic
	Slide 31: Common Properties: Differential
	Slide 32: Activity: Devise a set of properties
	Slide 33: Activity: Devise a set of properties
	Slide 34
	Slide 37: Key Takeaways

