Open Source

17-313: Foundations of Software Engineering
https://cmu-313.github.io

Michael Hilton and Chris Timperley
Fall 2025

3 n
Software and Societal C‘:dl negie
Systems Department Mellon

University

https://cmu-313.github.io/
https://cmu-313.github.io/
https://cmu-313.github.io/

Administrivia

- Teamwork survey deployed today. We will have a survey after the
lecture as well

« Guest Lecture next Tuesday - PLEASE ARRIVE ON TIME!
* Project 4 Checkpoint 1 extended to Friday

* NOTE: You must be present DURING THE PARTICIPATION activity
for participation points

~ %
53 Software and Societal Car negie

Systems Department Me!lon :
University

Learning Goals

« Distinguish between open-source software, free software, and commercial
software.

» Identify the common types of software licenses and their implications.
» Distinguish between copyright and intellectual property.

« Express an educated opinion on the philosophical/political debate between
open source and proprietary principles.

 Describe how open-source ecosystems work and evolve, in terms of
maintainers, community contribution, and commercial backing

« Identify various concerns of commercial entities in leveraging open-source,
as well as strategies to mitigate these.

Al = L
Software and Societal Car negie
Systems Department Mellon

University

Open Source

Software and Societal Cal‘llt‘gie
Systems Department Mellon

Uniw

Background: laws and open source

« Copyright protects creative, intellectual and artistic works —
including software

« Alternative: public domain (nobody may claim exclusive property
rights)
- Trademark protects the name and logo of a product

« OSS is generally copyrighted, with copyright retained by
contributors or assigned to entity that maintains it

« Copyright holder can grant a license for use, placing restrictions
on how it can be used (perhaps for a fee)

Carnegie

Software and Soc t I
Mellon
530 Systems D epar tm University

ALL MODERN DIGITAL
INFRASTRUCTURE

e

r ki

11

A PROTECT SOME

RANDOM PERSON
IN NEBRASKA HAS

L BEEN THANKLESSLY

MAINTAINING
SINCE 2003

33 Software and Societal Cal‘llt‘-gie

System5tDepattmert Mellon
University

What is Open-Source
Software?

Open-source

Proprietary

r@ Uber

ml J TikTok
_l
NETFLIX

What is Open-Source Software (OSS)?

* Source code availability
* Right to modify and creative derivative works
« (Often) Right to redistribute derivate works

Software and Soc t | Carnegie
Ssl) Systems D epar tm Mellon

University

Contrast with proprietary software: a black box

* Intention is to be used, not examined, inspected, or modified.

* No source code - only download a binary (e.g., an app) or use via
the internet (e.g., a web service).

 Often contains an End User License Agreement (EULA) governing
rights and liabilities.

« EULAs may specifically prohibit attempts to understand
application internals.

Carnegie

Software and Societal -
S3 Mellon

Systems Department : .
University

Example: Bank
app on my phone

S3

Software and Societal
Systems Department

@4 865%

1. Grant of License

The Licensor hereby grants you limited,
personal, non-exclusive, non-transferable,
revocable license to install the Application on
your mobile device for your personal use. You
may not (and shall not permit or assist any third
party to): (i) copy (except as expressly permitted
by this License), decompile, reverse engineer,
disassemble, attempt to derive the source code,
modify, or create derivative works of the
Application, any updates, or any part thereof; (ii)
rent, lease, lend, sell, redistribute or sublicense
the Application; (iii) use the application in any
manner that could damage, disable, overburden,
or impair the Application (or any server or
networks connected to the Application) or
interfere with any third party’s use and/or
enjoyment of the Application (or any server or
networks connected to the Application); (iv)
intentionality interfere with or circumvent the
Application’s security features; (v) use, test or
otherwise utilize the Application in any manner
for purposes of developing or implementing any
method or software that is intended to monitor
or interfere (including intercept or capture data)
with the functioning of the Application (or any
server or networks connected to the
Application); or (vi) otherwise use the
Application in any unlawful manner, for any
unlawful purpose or in any other manner not
expressly granted in this License. The terms of
this License will govern any updates provided by
the Licensor that replace and/or supplement the
original Application.

Any open source software that may be

Decline Accept

¥4 W65%

n End r Lice

OTTGITUT NP PITCU o

Any open source software that may be
accompanying the Application is provided to
you under the terms of such open source
license agreement. This License does not apply
to any such open source software
accompanying the Application, except as
expressly stated herein.

2. Ownership

The software, content, visual interfaces,
interactive features, information, graphics,
design, compilation, computer code and all
other elements of the Applications (the
“Materials”) are protected by intellectual
property rights—including copyright, trade dress,
patent, trade secret and trademark laws of the
United States, other jurisdictions, and
international conventions, and all other
applicable laws (collectively, “Applicable
Intellectual Property Laws”). All Materials are
the property of the Licensor or its subsidiaries
or affiliated companies and/or third-party
licensors. The Licensor reserves all rights not
expressly granted in this License. You shall not
acquire any right, title or interest to the
Materials, whether by implication, estoppel, or
otherwise, except for the limited rights set forth
in this License. You hereby agree to abide by all
Applicable Intellectual Property Laws.

3. Privacy and Consent to Use of Data
You agree that the Licensor, its affiliates, and
their corresponding service providers may

collect, maintain, and use technical data and
related information about you and your device

Decline Accept

Carnegie
Mellon

University

Why Go Open Source (vs. Proprietary) ?

Advantages Disadvantages

* <today'’s activity; do in groups>

Al = L
Software and Societal (Adl negie
Systems Department Mellon

University

Why Go Open Source (vs. Proprietary) ?

Advantages Disadvantages

« Transparency, gain user trust « Reveal implementation secrets

« Many eyes: crowd-source bug « Many eyes: users can find faults
reports and fixes more easily

« Security: more likely for Security: more likely for others to
vulnerabilities to be quickly identified find vulnerabilities first

« Community and adoption: get others « Control: You may not be able to
to contribute features, build stuff influence the long-term direction of
around you, or fork your project your platform

hl = L
Software and Societal l(\;fldlﬁlegle
Systems Department '1e1101

University

Early open source: UNIX to BSD

* Hardware was not yet standardized, computer vendors
focused on hardware, building new operating systems for
each platform

* Much software development focused in
academic labs, and AT&T's Bell Labs

* Unix created at Bell Labs using the new,
portable language “C", licenses initially
released with source code

+ 1978: UC Berkeley begins distributing
their own derived version of Unix (BSD)

« AT&T is prohibited from entering new
telecommunications businesses
(can't make OS a product)

Carnegie

Software and Societal -
S3 Mellon

Systems Department : .
University

The BSD License is Permissive

« Authors of BSD created a license for the OS that:
1. Required those using it to credit the university
2. Limited liability for (mis)-use

Copyright (c) <year>, <copyright holder> All rights reserved.
Redistribution and use insource and binary forms, with or without modification, are permitted provided that the following conditions are met:

1.Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2.Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materids provided with the distribution.

3.All advertising materials mentioning features or use of this software must dsplay the following acknowledgement: This product includes software developed by the <copyright holder>.

4 Neither the name of the <copyright holder> nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY <COPYRIGHT HOLDER> AS /S AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

FITNESS FOR APARTICULAR PURPOSE ARE DISCLAIMED.... (move waivers of liability)

Original BSD license

Quiar ani t policy (Quarant
1986, 1989, 1991, 1993

of the University of Californla. ALL right:

Fully initialized

lers and 10248 cl - 10 buffer hea i N i
Software and Societal " 3 - [P 19 2014 A80:11 3% Lal Ilegle
Systems Department : %[‘illl(()?n)
niversl

UNIX to GNU'’s Not Unix

 Timeline
« 1978: UC Berkeley begins distributing
their own derived version of Unix (BSD)

» 1983: AT&T broken up by DOJ, UNIX
licensing changed: no more source releases

« Competing commercial vendors all package and
sell their derivations of UNIX (AT&T, HP, Sun, IBM,
SGl)

 Also 1983: “Starting this Thanksgiving | am going to
write a complete Unix-compatible software system
called GNU (Gnu’s Not Unix), and give it away free
to everyone who can use it”

Carnegie

Software and Societal -
S3 Mellon

Systems Department : .
University

Free software as a Philosophy

* “Free as in Speech, not as in beer”
Richard Stallman'’s Free Software Foundation — free asin
liberties
« Freedom 0: run code as you wish, for any purpose
» Freedom 1: study how code works, and
change it as you wish
« Freedom 2: redistributed copies (of original) so
you can help others
« Freedom 3: distribute copies of your modified
version to others

walL negio

Mellon
University

Software and Societal
Systems Department

Free software as a Philosophy

* “Free as in Speech, not as in beer”

FSF: software licensed under GNU Public License (GPL), considering questions
like:
» Required to redistribute modifications (under same license)? Yes, “copyleft”
« Canyou combine it with more restrictive licenses? No, not even with BSD!

Alternative (more like BSD):
“Do whatever you want with this software, but don't blame me if it doesn’t work” freeware

Al = L
Software and Societal (jdl negie
Systems Department Mellon

University

Copyleft v. permissive

« Can | combine OSS with my product, releasing my product under
a different license (perhaps not even OS)?

» Permissive licenses encourage adoption by permitting this
practice

- Copyleft “protects the commons” by having all linked code under
same license, transitively requiring more sharing

 Philosophy: do we force participation, or try to grow/incentivize it
in other ways?

Carnegie

Software and Societal -
S3 Mellon

Systems Department] .
/ . University

GNU/Linux (1991-Today)

« Stallman set out to build an operating system in 1983, ended up
building utilities needed by an operating system (compiler, etc)

e Linux is built around and with the GNU utilities, licensed under
GPL

e Rise of the internet, demand for internet servers drives demand
for cheap/free OS

« Companies adopted and support Linux for enterprise custome (é
* IBM committed over $1B; Red Hat and others

Al - L
Software and Societal Car negie
Systems Department Me!lon .
University

Free Software vs. Open Source

®* Free software origins (70-80s ~Stallman)

® Cultish Political goal e M
® Software part of free speech % '
® free exchange, free modification el
® proprietary software is unethical / i
® security, trust G N U LI n UX

® GNU project, Linux, GPL license

® Open source (1998 ~O'Reilly)
® Rebranding without political legacy
® Emphasis on internet and large dev/user involvement
® Openness toward proprietary software/coexist
® (Think: Netscape becoming Mozilla)

Al = L
33 Software and Societal Car negie

Systems Department Me!lori :
/ . University

Netscape's open source gambit

100°%

 Netscape was dominant web browser early 90's .

60%%
* Business model: free for home and education use,
companies pay

40°%%

20°%

 Microsoft entered browser market with Internet °%i5a 1556

Explorer, bundled with Windows95, soon =D . o

overtakes Netscape in usage (free with Windows) ===

Netscape unveils its Navigator

» January 1998: Netscape first company to open sowcecodeste
source code for proprietary product (Mozilla) L

3 n
Software and Societal Car negie
Systems Department Mellon

University

Netscape creates a new license and model

 Until Netscape, much of OSS was the FSF and its GPL

« Open Source coined in 1998 by the Open Source Initiative
to capture Netscape’s aim for an open development
process

* New licenses follow, e.g. MIT, Apache, etc. just like BSD, but
without the advertising part

 Publisher Tim O'Reilly organizes a Freeware Summit later in
1998, soon rebranded as Open Source Summit

« Open Source is a development methodology; free software [EEESSEVAS
is a social movement RGHITRS

— Richard Stallman 4

3 n
Software and Societal (mell negie
Systems Department Mellon

University

Perception (from some):

* Anarchy
* Demagoguery
* ldeology
* Altruism

A REMINDER
from
YOUR FRIENDS AT MICROSOFT

R = L
Software and Societal Car negie
Systems Department

Mellon
University

Open-Source Ecosystems

How OSS is developed

D Software and Societal Cal‘llt‘gie
Systems Department Mellon

University

The Cathedral and the Bazaar

& THE BAZAAR

MUSINGS ON LINUX AND OPEN SOURCE
BY AN ACCIDENTAL REVOLUTIONARY

WITH A FORENGRD BY 338 YOUNS, CHARMAN & CEO OF RED HUT, I8¢

RUA L
Software and Societal (jdl negie
Systems Department Mellon

University

The Bazaar won

Cathedral Bazaar

» Developed centrally by a Developed openly and
core group of members organically

* Available for all once « Wide participation (in
complete (or at releases) theory, anyone can

- Examples: GNU Emacs, GCC ~ contribute)
(back in the 19905s) « Examples: Linux

3 n
Software and Societal (;fdl negie
Systems Department Mellon

University

OSS has many stakeholders / contributors

« Core members
« Often (but not always) includes the original creators
« Direct push access to main repository
« May be further splitinto admin roles and developers

« External contributors
« File bug reports and report other issues
 Contribute code and documentation via pull requests

« Other supporters

» Beta testers (users)

« Sponsors (financial or platform)

« Steering committees or public commenters (for standards and RFCs)
* Spin-offs

« Maintainers of forks of the original repository

Carnegie

Software and Societal ; 5
Systems Department Me!lon .
University

Contributing processes

« Mature OSS projects often have strict contribution
guidelines

e Look for CONTRIBUTING.md or similar

« Common requirements:
« Coding style (recall: linters) and passing static checks
* Inclusion of test cases with new code
 Minimum number of code reviews from core devs
« Standards for documentation
 Contributing licensing agreements (more on that later)

3 n
Software and Societal (;fdl negie
Systems Department Mellon

University

Governence

« Some OSS projects are managed by for-profit firms

« Examples: Chromium (Google), Moby (Docker), Ubuntu (Canonical), TensorFlow (Google),
PyTorch (Meta), Java (Oracle)

+ Contributors may be a mix of employees and community volunteers

» Corporations often fund platforms (websites, test servers, deployments, repository hosting,
etc.)

+ Corporations usually control long-term vision and feature roadmap

« Many OSS projects are managed by non-profit foundations or ad-hoc communities

+ Examples: Apache Hadoop/Spark/Hbase/Kafka/Tomcat (ASF), Firefox (Mozilla), Python (PSF),
NumPy (community)

» Foundations fund project infrastructure via charitable donations
+ Long-term vision often developed via a collaborative process (e.g., Apache) or by benevolent
dictators (e.g., Python, Linux)

» Corporations still heavily rely on community-owned OSS projects

2 \/

\ViB=Ya () - -
Al = L
Software and Societal Car negie
Mellon
University

Systems Department

J APAcHE

Example: Apache ouR sponsons

oo e wonasn, I you n) 1o AL e * LTS 3

WHAT MAKES THE APACHE WAY SO HARD TO DEFINE? TR o -

The Apache Way is a living, breathing interpretation of one’s experience with our community-led development process. Apac Platinum Sponsors:

unique, diverse, and focused on the activities needed at a particular stage of the project’s lifetime, including nurturing cormm
building awareness. What is important is that they embrace:

+ Earned Authority: all individuals are given the opportunity to participate, but their influence is based on publicly earned F A C E B O O K ya hoo.

community. Merit lies with the individual, does not expire, is not influenced by employment status or employer, and is n|
project cannot be applied to another). More on merit.

Facetuoce Yahoo!

Community of Peers: individuals participate at the ASF, not organizations. The ASF's flat structure dictates that roles arg
egual weight, and contributions are made on a volunteer basis (even if paid to work on Apache code). The Apache comr

with respect in adherence to our Cede of Conduct. Domain expertise is appreciated; Benevolent Dictators For Life are dif
participation. < \ l
.

-~
+ Open Communications: as a virtual organization, the ASF requires all communications related to code and decision-m
asynchronous collaboration, as necessitated by a globally-distributed community. Project mailing lists are archived, pub Plneapple Fund HUAWEI
Preaggie g L al

o dev@ (primary project development)

o user@ (user community discussion and peer support)
o commits@ (automated source change notifications) aWS . - <
o occasionally supporting roles such as marketing@ (project visibility) M l Crosoft
..aswell as restricted, day-to-day operational lists for Project Management Committees. Private decisions on code, policies, or \\ = ’ .

discourse and transactions must be brought on-list. More on communications and the use of mailing lists.
Arrazon Web Services Mcrowoft

+ Consensus Decision Making: Apache Projects are overseen by a self-selected team of active volunteers who are contrib)
Projects are auto-governing with a heavy slant towards driving consensus to maintain momentum and productivity. W
establish at all times, holding a vote or other coordination may be required to help remove any blocks with binding deci ’

More on decision making and voting. Go {) Ie
Responsible Oversight: The ASF governance model is based on trust and delegated oversight. Rather than detailed rul
Coogle

governance is principles-based, with self-governing projects providing reports directly to the Board. Apache Committer
reviewed commits, employing mandatory security measures, ensuring license compliance, and protecting the Apache Assie
abuse. More on responsibility.

Software and Societal](;A[dlﬁlt‘glt‘
SystemsRepartment '1e1101

University

Corporate outlook towards open-source has
evolved over the years

-2-
February 3, 1976

Redmond top man Satya Nadella: "Microsoft
g S S e e LOVES Linux'

without n owner who understands programming, a
hobby computer is wasted. Will quality software be written for the

hobby market?
) (O

Almost a year ago, Paul Allen and myself, ting the hobl op -Source love fa dy ru th d d
mazkat to exgapds Ml oats Tevi0ts Sl Seveloned Mtals BAate en urs | nneth over at cloud event
Though the initial work took only two months, the three of us have
spent most of the last year documenting, improving and adding fea-
tures to BASIC. Now we have 4K, K, EXTENDED, ROM and DISK BASIC.
The value of the computer time we have used exceeds $40,000.

The feedback we have gotten from the hundreds of people who
sy they are using BASIC has all besn positive. 1w surprising
separect, bovevar. 1) Most of these -asers” never bodght
than 10% of all Altair cwncrs have bought DASIC), aud
2) The amount of royaltics we have received from sales to hobbyists

“...most of you steal your softwa

Ts this fair? One thing you don't do by stealing software is
get back at MITS for somo problem you may have had. MITS doesn't
make money selling software. The. royalty paid to us, the manual,
the tape and the overhead make it a break-even operation. One th:
you do do is prevent good software from being written. Who can af-
ford to do professional work for nothing? What hobbyist can put
3-man years into programming, finding all bugs, documenting his pro-
duct and distribute for free? The fact is, no one be:
ted a lot of money in hobby software. We have written 6800

nd are writing 8080 APL and 6800 APL, but there is very lit-

directly, the thing you do is theft.

What about the guys who re-sell Altair BASIC, aren't they mak-
ing money on hobby software? Yes, but those who have been reported
to us may lose in the end. They are the ones who give hobbyists a
bad name, and should be kicked out of any club meeting they skow up
at.

© lottors from any ono who wanta to pay up,

Just weite ne at 1180 Alvacado SE, #114,

me more than
wit)

1 would apprecia
has a suggestion or comment.
Albuquerque, New Mexico, 87108. Nothing would plea:
being able to hire ten programmors and deluge the hobby mar

good software. 5” b,m

Bi11 Ga
Generad Partner, Micro-soft

20 Oct 2014 at 23:45, Nel McAlister

Carnegie
Mellon’

Systems Department

33 Software and Societal
University

Risks in not open-sourcing?

S3D

MapReduce: Simplified Data Processing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat

JofT® google com, sangay @ googhe com
Google, Inc.

Abstract
MapReduce is a programmisg model and s aswoch
3t i fory wng and p g darge

dats sets. Users specefy a map fusction tha peocesses 3
keylvalue pair 1o geocraie a set of imennediate key'value
pairy, and a redwce function tha morpes all mtermediate
valees associated with the seme mtermodans koy. Many
real world tasks are eapresuble in this model, s shown
in the papes

Programss writtes (o this fi d style are

gives day, eic. Most such competaions se CosCepo-
ity straightforwand. However. the ispot data |s uswally
I.uanhht 7 have o bo distriby *T08

drods or th ds of machines in ceder to finish i
a remonable amount of tme. The taues of Bow 10 par.
aliclize the competation, distribete the data, snd handlc
faileres conspine 10 obcese the crginal simple compu-
ation with lasge amounts of complex code 10 deal with
these issees.

A;nwmmwlh-cmuy we dovignod a pew

cally pasaliciired and executed on a laege chester of com:
modity machines, The rn-tame system takos care of the
details of pantitioeing the input data, schaduling the peo-
fram’s execution scross 8 set of machines, handlag ma.

Software and Societal
Systems Department

St aldows w40 express the umple computa-
tons we -tuﬂ)m;mpuiammw;mcmu\yde
tads of pasalich , data

-db-lhhn:u‘nahh-ry o«m" in-
spired by e map and reduce prunitives peesent is Lisp

Carnegie
l\lellon
University

Use of open source software within companies

Is the license compatible with our intended use?
« More on this later

« How will we handle versioning and updates?

» Does every internal project declare its own versioned dependency or do we all agree on
using one fixed (e.g., latest) version?

« Sometimes resolved by assigning internal “owners” of a third-party dependency, who are
responsible for testing updates and declaring allowable versions.

How to handle customization of the OSS software?
* Internal forks are useful but hard to sync with upstream changes.
« One option: Assign an internal owner who keeps internal fork up-to-date with upstream.

« Another option: Contribute all customizations back to upstream to maintain clean
dependencies.

Security risks? Supply chain attacks on the rise.

Carnegie

Software and Societal
Systems Department

Mellon

University

ALL MODERN DIGITAL
INFRASTRUCTURE

e

r i

(s

A PROTECT SOME.
RANDOM PERSON
IN NEBRASKA HAS
L BEEN THANKLESSLY

MAINTAINING
SINCE 2003

Software and Societal
SystembtDepatthert/2347/

QUARTZ Make bus,eas bectar ™

C quﬂula‘l'o' .::= 2

HOME LATESY QUSINESS NEWS MONEY O MARKEYS TYECH O INNOVATION LIFESTYLE LEADERSHIP EMAILS PODCASYS ENESPAROL

e Sy 6 | ram— Sem am) 54 P g

How one programmer broke the
internet by deleting a tiny piece of

o] leftpad;
ftpad (’

) {

) ch
str. length;
len) {
str;

Carnegie
Mellon
University

Software Licenses

Note: | am not a lawyer (this is not legal advice)

hl = L
Software and Societal](;A[dlﬁlt‘glt‘
Systems Department '1e1101

University

Most popular open source licenses worldwide in 2021

*
Apach T4.1%

[]

T
[+]

LPL 5.0
“

2.0
1

B5D 3
a8

BSD¥ 2

Srarista 2023 M

& Additional Infarrmation Show source @

33 Software and Societal Ci—ll‘llt‘glt‘

System5tDepartrneit %“Iellon’

Which license to choose?

« C O & iosealeerse com '\"a"ﬁ.lﬂ

Choose an open source license

A COR SOLTE ICHTI DITARCTA CONTEUATE 3 SEArL. [DNAneTINT 27 BEVYy SRVBCORS O | ST 3 IOt WO TR prosecon

Which of the following best describes your situation?

i 2 =

Ineed toworkina I want it simple and 1care about sharing
community. permissive. improvements.

Une 18 Barree [reserret Uy Dw The MIT Lcerwe # Von wnd T QL GPLYD 30 Wts Peogie 30 wmast
B e A -ty Cecpe de ot ay YT ey warl w o e aeiepd
Seperciog on. Yoor progect wil ¥ fgt In " e fromct e A0 COMT WRITS Vereona
DTS D nATE v
¥ yOu Y 8 RPNy Tt Gowen | have Acaiie. D, s GNP une the OGN
B MCue. aak B3 ety 83 00 8 Bt MET, 408 Mats von e MT Ui P
soarae

What if none of these work for me?

My projectisn't 1 want more Idon't want to
software. choicos. choose a license.

Thers srs boarmes for St Moy Bcenias a8 aeadatse Harw's what happens # you den't

Software and Societal (jal‘llt‘git‘
Systems Department Mellon .

University

GNU General Public License: The Copyleft License

* Nobody should be restricted by the software they use. There are
four freedoms that every user should have:
® the freedom to use the software for any purpose,
® the freedom to change the software to suit your needs,
® the freedom to share the software with your friends and neighbors, and
® the freedom to share the changes you make.

* Code must be made available

* Any modifications must be relicensed under the same license
(copyleft)

Al = L
Software and Societal Car negie
Systems Department Mellon

University

Risks of “copyleft” licenses

* Example: GNU GPL

* Require licensing derivative works also with same license
* This isintentional!

* Depending on a GPL project from within a proprietary or
differently-licensed codebase is disaster

* Viral effect of polluting everything else with GPL requirement

* Most companies will avoid GPL code with a ten-foot pole

* Expectvetting process before engineers are allowed to use third-party
libraries from GitHub, etc.

Al = L
33 Software and Societal Car negie

Systems Department Me!lori :
/ . University

Lesser GNU Public License (LGPL)

* Software must be a library

* Similar to GPL but does not consider dynamic binding as
“derivative work”

* So, proprietary code can depend on LGPL libraries as long as
they are not being modified

* See also: GPL with classpath exception (e.g., Oracle JDK)

Software and Soc t | Carnegie
Ssl) Systems D epar tm Mellon

University

MIT License

* Simple, commercial-friendly license
* Must retain copyright credit

* Software is provided as is

* Authors are not liable for software
* No other restrictions

hl = L
Software and Societal l(;jldlﬁlt‘-gle
Systems Department '1e1101

University

Apache License

* Similar to MIT license

* Not copyleft

* Not required to distribute source code

* Does not grant permission to use project’s trademark
* Does not require modifications to use the same license

R = L
33 Software and Societal Car negie

Systems Department N[e!lOIi :
University

BSD License

* No liability and provided as is.
* Copyright statement must be included in source and binary

* The copyright holder does not endorse any extensions without
explicit written consent

RUA L
Software and Societal (jdl negie
Systems Department Mellon

University

Creative Commons (CC)

* More common for licensing data-sets instead of code
* Examples: images, websites, documentation, slides, plots, videos

* CC-BY (attribution only; derivatives allowed)
* CC-BY-SA (attribution and share-alike for derivates)
* CC-BY-ND (attribution and no derivatives)

hl = L
Software and Societal](\Jf[(]llilegle
Systems Department '1e1101

University

Dual License Business Model

MySOol: -

Software and Societal

Released as GPL which
requires a company
using the open source
product to open
source it's application

Or companies can pay
$2,000 to $10,000
annually to receive a
copy of MySQL with a
more business friendly
license

Carnegie

Mellon

S3D

Systems Department

University

Risk: Incompatible Licenses

* Sun open-sourced OpenOffice, but when Sun was acquired by
Oracle, Oracle temporarily stopped the project.

* Many of the community contributors banded together and
created LibreOffice

* Oracle eventually released OpenOffice to Apache

* LibreOffice changed the project license so LibreOffice can copy
changes from OpenOffice but OpenOffice cannot do the same
due to license conflicts

Software and Soc t | Carnegie
530 Systems D epar tm Mellon

University

Copyright vs. Intellectual Property (IP)

* |P and Patents cover an idea for solving a problem

* Examples: Machine designs, pharma processes to manufacture certain
drugs, (controversially) algorithms

* Have expiry dates. IP can be licensed or sold/transferred for $$$.

* Copyrights cover particular expressions of some work
* Examples: Books, music, art, source code

* Automatic copyright assignment to all new work unless a license
authorizes alternative uses.

* Exceptions for trivial works and ideas.

hl = L
Software and Societal l(\;/[dlﬁlegle
Systems Department elion

University

Contributor Licensing Agreements (CLA)

* Often a requirement to sign these before you can contribute to
OSS projects
* Scoped only to that project

* Assigns the maintainers specific rights over code that you
contribute

* Without this, you own the copyright and IP for even small bug fixes and
that can cause them legal headaches in the future

Al = L
Software and Societal (;fdl negie
Systems Department Mellon

University

Dependency Management

33 Software and Societal Cal‘llt‘-gie

Systems Department Mellon
-Slt‘v

T

Left-pad (March 22, 2016)

cosesasons QUARTZ

How one programmer broke the
LAITNINIR internet by deleting a tiny piece of
code

How an |rate developer brleﬂy broke JavaScript

Inpublis of code brought down an open source house of cards

P & sionn The A Register’

{* SOFTWARE “}

How one developer just broke Node, Babel and
thousands of projects in 11 lines of JavaScript

Code pulled from NPM — which everyone was using

Software and Societal Car 11(‘019
Systems Department l\lellon

University

Left-pad (March 22, 2016)

npmijs.org tells me that left-pad is not available (404 page) #4
silkontrance coened this ssue on Mar 22, 2016 - 193 comments

e silkentrance commented on Mar 22, 2016

Whan Bulaing projects 0n tranis, of whan soarchng 10r left-pad on npmys.com, both will ropoct that the package cannct be
found.

Heto is an excerpt from the travis Duild log

A1 Lisux 3.33.0-49-generic

ERR! argv “/home/trovis/.nva/versions/eodes/ve, 2. 2/0in/nede™ "/hone/travis/ . nve/versions/node/ve, 2, 2/0in/ree
CAR] node vi. 2.2

ERRI npe ¥2.34.7

[RR! code L404

CRRY 404 Registry returned 404 for CET on Mupsi//reqistry . spn)s.org/left-pas
R A

ERR1 404 'left-pad” is net iIn the rpe registry.

ERA! 408 You sheuld bug the suthar to publish It for wie the nase yowrself!)
ERR! 404 1t was specificd a3 & dependescy of ‘lise-nembers’

ERRY 404

ERRY 404 Nete that you can alse install from &

ERAL 408 tarball, folder, hitp wrl, or git url,

IRR! Please inciude the following file with any sugpert request:

ARt Ihone/ travis/build/coldrye-ed/pinga/apa-debeg, 109

make: see [dops] Error 3

SRR3R RRRR RS

And here is the standard npmis. com error page htps (weww. rpena comfpackagetof-pad

Mowever, # 1 remove left-pad from myy local ngm cache and then reinstall it using npm it will happily install left-pad©0.04

Software and Societal (;i—ll‘llt‘glt‘
Systems Department Mellon

University

Left-pad (Docs)

left-pad nstall

fpa L lefr-pad
String left pad

m Rapos |d|'r
& github,.com/steveman/left-pad
Install
Homepage
5 npm install left-pad & github.com/stevemacleft-padireadme

¢ Weekly Downloads

Usage N ———
g 2,962,641
const leftFad = reguire|’'left-pad’) Wrhiut Licinize
1.3.0 WTFPL
lefePad("foo”, 5)
Unpacked Size Totad Files
3. 75 kB 10
lafePad(" foobar”, &)
55 LS Pull Reguests
leftPad(l, 2, "0") 3 T
Last publish
lefePad(17, 5, 0) 4 years ago

Carnegie

Software and Societal ; e
Systems Department Mellon

University

Left-pad (Source Code)

17 lines {11 sloc) 222 Bytes

1 module.exports = leftpad;

2z

3 function leftpad (str, len, ch) {
4 str = String(str);

5

] var i = -1;

T

B if (!ch & ch !== @) ch = * *;
9

18 len = len = str.length;

11

12 while (++1i = len) {

13 str = ¢h + str;

14 }

15

16 return str;

7}

Software and Societal (:al‘llt‘glt‘
Systems Department Mellon

University

5 lines (4 sloc) 133 Bytes

o 1 wvar toString = {}.toString;
See also: isArray :
o 3 module.exports = Array.isArray || function (arr) {
4 return toString.callf{arr) === "[object Array]';
5
Isa rra}l‘ Inptsl|
ArrayBisArray for alder browsers and deprecated Node 5 versions ol
Repaiitary
pithub.com/juliangruber/isarray;
Homepage
& github.comjjuliangruber/isarray
¥ Weakly Dow
50,913,317
Just use Array.ishmay directly, unless you need to support those older versions
Usage 2.0.5 MIT
P a— Ungacked Size Totsl Files
343 kE 4
conaole. log(ishrrayd[1))
connole.log(isArrayd{}))z lidues Pull Requeests
4 3

Al = L
Software and Societal (jdl negie
Systems Department Mellon

University

Michael Hilton 7:28 pm
Did | break something? | was pushing changes for P4, | thought they were all in a branch...

Sarah Cross 7:29 PM
No, | think NodeBB broke something

upen e nome page

' -o- Commits on Nov 1, 2025

Merge pull request #457 from CMU-313/fix_issues_before_p4 ==
- - - .Venfled
‘ m MichaelHilton authored 4 daysago - v 2/2

ec71934 (O <

changes to get tests to pass

64sbc18 (0 <>
I MichaelHilton committed 4 days ago - v/ 2/ 2

resolved conflict
3a4275a (0 <>
I MichaelHilton committed 4 days ago - X 1/2

bug: resolved font path issues

flezesc (0 <>
.) html1101 authored and MichaelHilton committed 4 days ago

perf: updated to sync with bugfix + pass tests

3199cac (0 <>
‘) htmI1101 authored and MichaelHilton committed 4 days ago

-o- Commits on Oct 30, 2025

=,) -]
Upgrade nodebb-theme-harmony (#455) et) &5
. html1101 authored last week - v/ 2 /2

Software and Societal (:al‘llt‘glt‘
Systems Department Mellon

University

Dependency Management

* It's hard
* It's mostly a mess (everywhere)

* But it's critical to modern software
development

Al = L
53 Software and Societal Car negie

Systems Department Mellon
University

What is a Dependency?

® Core of what most build systems do
* “Compile” and “Run Tests" is just a fraction of their job

®* Examples: Maven, Gradle, NPM, Bazel, ...

* Foo->Bar: To build Foo, you may need to have a
built version of Bar

®* Dependency Scopes:

* Compile: Foo uses classes, functions, etc. defined by Bar

* Runtime: Foo uses an abstract APl whose implementation is
provided by Bar (e.g. logging, database, network or other 1/0)

* Test: Foo needs Bar only for tests (e.g. JUnit, mocks)

® Internal vs. External Dependencies

* Is Baralso built/maintained by your org or is it pulled from elsewhere
using a package manager?

Al = L
Software and Societal Car negie
Systems Department Mellon

University

Dependenues Example

o e A Package: git (1:2.17.1-1ubuntu0.9 :

<Be5erIer< MITIGeRen TS

cretentesslein fast, scalable, distributed revision control system

" cdepentencys
Qe IarLon, SLIRICS LS/ R 10 Other Packages Related to git
Areitact itsdeccored/artitaeties
aversiom i {prasnct overs Lonha/vers lans ® ceceoy * recommende ® sgpen . arhances
14 o Sepensen
o ® Dl (6 1307.0.) Mot amatd o0
“' isiaach tarl somatie Sureted WeRon COMYOl Yae (marar Degm
it o leCon, 3 13RI B8 s</grovpl > P (< T AT 1) et 000
™ CArTITACTIErE0CS ~wet-COMMOn</ Mt 11aC e o 12.17.00 Dot emeitd, 008}
o RIS (Do) T v R Lon)/ very
o </ epessmncy> phoman (»x 12 57.1) janctd, (30)
© © 100k (vn 2900 Aot i, poctded
4 adependency> G C Ltmary Bhaced vwws
L SO [Erton. 13010 B/ g 1 0» 00 8 WM JOCRIGE Croveed by itet-uoes
BT IEEC S wet-Conmona/Art 1 TAct I 0o 251 e aeeehie
' Aypertert-jare</types
i “vers »LProJect . versLon)e/ vers Lons ® Wowrd g D=7 D
</degersercy> Sary A re et by LS warabes My (Gma LD Pueor)
® it~y
depensency> Pt mode Ko ey scepton haedieg w an OO0 ah way
e QoD e Con. S 1SRICS A s</pravelar © ot (o261
AL I Enaot S el hr L L Tact [d> XAR, pareing C Sery - rusing oty
» VAL {DoJ oL L. v Lan b/ vers Lans
“sdepenseacy Sy
o Oit Por $ Companbie Reguier Ergraescn Lieary - rurtes fien
' wdepresendys .o
(] parg.eciipir. jetty<) wpies Lawry Yy Prsctiosl Eviraction ane Seport Languege
" tlerjetty-serverc/artitactios © EDA 0o 1108
'Y Ve ionnd (0g. 0 LIpHa. JRT Ly, Oty “arver vers100)«/pars jons Sonereation iy - ASdinG
< PNy
® -
" cdepaeinngye PENN SRR S
it rowpleorg.eciipse. Jettys/rouploe . e
3 jettywmtagpasariit Ascry & 91 e Ve rpee
w veraLome 0rg, 0 LIDHE, [Tty JON Ly vaBagp. vers10n) /v rs Lone S daatin
" “/aepertencys

WA BB vt by AR et

3 D Software and Societal Cdl‘llt‘.‘.’,lt‘

Systems Department l\[ellon .
y p University

Where are the dependencies
hosted?

i Typically downloaded from dependency servers: pgthOﬂ ”

® Maven Central (https://repo.maven.apache.org/maven2/) Package

Ubuntu Packages for Apt (https://packages.ubuntu.com/) (\ Index
Python Package Index (https://pypi.org/)]

NPM Public Registry (https://registry.npmjs.org/)

Packages need a unique identifier
® Typically a package name (sometimes owner name) and version
® Custom repositories allowed by most package managers

Often used for company-internal packages or cache mirroring

Note problems with duplicates (same package name in different repositories; some
priority order is needed)

Somebody needs to manage repositories

Availability: Repository needs to be running

Access Control: Packages should only be published by owners

Integrity: Packages should be signed or otherwise verifiable

Uniqueness and archival: Only one artifact per version

Traceability: Packages can have metadata pointing to source or tests
® Security: 777

Al = L
53 Software and Societal Car negie

Systems Department Mellon
Uniw

https://repo.maven.apache.org/maven2/
https://packages.ubuntu.com/
https://pypi.org/
https://registry.npmjs.org/

Transitive Dependencies

Packages can depend on other packages

Q: Should Git be able to use exports of libSSL (e.g. certificate
management) or zLib (e.g. gzip compression)?

Al = L
Software and Societal (Adl negie
Systems Department Mellon

University

Diamond Dependencies

What are some problems when multiple
intermediate dependencies have the same
transitive dependency?

hl = L
Software and Societal l(;jldlﬁlt‘-gle
Systems Department '1e1101

University

Diamond Dependencies

What are some problems when multiple
intermediate dependencies have the same
transitive dependency?

hl = L
Software and Societal l(;jldlﬁlt‘-gle
Systems Department '1e1101

University

S3

Resolutions to the Diamond
Problem

1. Duplicate it!

* Doesn't work with static linking (e.g. C/C++), but may be doable with Java (e.g.

using ClassLoader hacking or package renaming)
* Values of types defined by duplicated libraries cannot be exchanged across

2. Ban transitive dependencies; just use a global list with one version for each
* Challenge: Keeping things in sync with latest
* Challenge: Deciding which version of transitive deps to keep
3. Newest version (keep everything at latest)
* Requires ordering semantics
* Intermediate dependency may break with update to transitive
4. Oldest version (lowest denominator)
* Also requires ordering semantics
* Sacrifices new functionality

5. Oldest non-breaking version / Newest non-breaking version
* Requires faith in tests or semantic versioning contract

Software and Societal
Systems Department

Carnegie

Mellon
ity

Semantic Versioning

Widely used convention for versioning releases
® E.g. 1.2.1,3.1.0-alpha-1, 3.1.0-alpha-2, 3.1.0-beta-1, 3.1.0-rc1
Format: {MAJOR} . {MINOR} . {PATCH}

Each component is ordered (numerically, then lexicographically; release-aware)
® 1.21<1.10.4

® 3.1.0-alpha-1 < 3.1.0-alpha-2 < 3.1.0-beta-1 < 3.1.0-rc1 < 3.1.0
Contracts:
® MAJOR updated to indicate breaking changes
® Same MA]OR version => backward compatibility
® MINOR updated for additive changes
® Same MINOR version => APl compatibility (important for linking)
® PATCH updates functionality without new AP
® Ninja edit; usually for bug fixes

Al = L
53 Software and Societal Car negie

Systems Department Mellon
University

https://semver.org/

200 20.0-rc.2 2.0.0rcd 1.0.0 1.0.0-beia

Semantic Versioning 2.0.0

Summary

Given a version number MAJOR.MINOR.FPATCH, increment the:

1. MAJOR version when you make incompatible APl changes,

2. MINOR version when you add functionality in a backwards compatible manner, and

3. PATCH version when you make backwards compatible bug fixes.
Additional labels for pre-release and build metadata are available as extensions to the MAJOR.MINOR.PATCH
format.

R = L
53 Software and Societal Car negie

Systems Department Mellon

Uniw

People rely on SemVer contracts

@ rohanpadhye [JQF pessc

<> Code @ Issues 10 Il Pl requests 3) Discussions *) Actiens 1 was D Security i~ Insights 5] Settings

Clarify versioning schema #150

sdruskat opened this issue on Aug 18 - 3 comments

a sdruskat commented on Aug 18 O e

Hi, and thanks for 3 great progect

I'm wondenng what the versionng schema for this project i3, Seeing the 1ags (containing 1.8, e1c.), | was assuming SemVer,
but | see that the API has changed between mimor increments {e.g., the newly added constructor arguments in
ZestGuidance)? Or am | mixing up things?

FWIW, | think that following semantic versioning would be great, and make it easier for forks to contribute back to the
upstream

Software and Societal
Systems Department

Dependency Constraints

* E.g. Declare dependency on "Bar > 2.1"

e Bar2.1.0,2.1.1, 2.2.0, 2.9.0, etc. all match
¢ 2.0xdoes NOT match
* 3.0x does NOT match

* Diamond dependency problem can be

resolved using SAT solvers

* E.g. Foo 1.0.0 dependson “Bar >=2.1" and “Baz 1.8.xX"
* Bar 2.1.0 depends on “Qux [1.6, 1.7]"
* Bar 2.1.1 depends on “Qux 1.7.0”
* Baz1.8.0 depends on “Qux 1.5.x"
* Baz1.8.1 depends on “Qux 1.6.X"
* Find an assignment such that all dependencies are satisfied
* Solution: Use Bar 2.1.0, Baz 1.8.1, and Qux 1.6 {latest}

RUA L
Software and Societal (jdl negie
Systems Department Mellon

University

Semantic Versioning Contracts

* Largely trusting developers to maintain them

* Constrained/range dependencies can c2au52... ...
unexpected build failures o il A i (e i (s

Pin jsonschema version to avoid swagger bugs

* Automatic validation of SemVer is harc s

P vt

@ toranpathys com e 3 dan 03

ﬁ Build E O daye ago o
Build #5: Manually run by rohanpadhye '5 16m 438 Showing 3 changed fles wih § adeiions and O deletions
Laad ~o
@ README: Add build badge ; B 2 months ago
master
Build #4: Commit fEE6b2a pushed by rohanpadhye 1 18m 125 Pyt SsmOesendrcy
o modulee__pame_ . hooesThen', versien Mrings"esd, 14,1
~ - -).
- nase__, vane

Carnegie

D Software and Societal
Systems Department Mellon
University

Cyclic Dependencies

* Avery bad thing
* Avoid at all costs
* Sometimes unavoidable or intentional

* E.g. GCCis written in C (needs a C compiler)
* E.g. Apache Maven uses the Maven build system
* E.g.)JDKtested using JUnit, which requires the JDK to compile

Al = L
Software and Societal (jdl negie
Systems Department Mellon

University

Cyclic Dependencies

Bootstrapping: Break cycles over time

Assume older version exists in binary (pre-built form)
Step 1: Build A using an older version of B

Step 2: Build B using new (just built) version of A
Step 3: Rebuild A using new (just built) version of B

Now, both A and B have been built with new versions of their dependencies

Doesn't work if both A and B need new features of each other at the same time
(otherwise Step 1 won't work)

* Assumes incremental dependence on new features

How was the old version built in the first place? (it's turtles all the way down)
* Assumption: cycles did not exist in the past
* Successfully applied in compilers (e.g. GCC is written in C)

R = L
33 Software and Societal Car negie

Systems Department N[e!lOIi :
University

Dependency Security

® wil you let strangers execute arbitrary code on your laptop?
* Think about this every time you do “pip install” or “npm install” or “apt-get
updgrade” or “brew updgrade” or whatever (esp. with sudo)
* Scary, right? Who are you trusting? Why?
¢ Typo squatting (“pip install numpi”)
i Outright malice (remember the event-stream incident?)
® Genuine secu rity vulnerabilities due to software bugs peerialization of Untrusted Datain Apache Logaj #74 Ly
et daye op o ey Mo ;
.,,.,..,., iove ;-'1.1 -n ' A
O sane SO A M R o . e -
L-’vtl W0 B 0 grate Mom Legdl) Lagd) 10 ary. et Legaing, Lagt) 1 Lagt) Nor a0 Lodated verson of “—.. :
OOW oppe— -y :‘

Al = L
Software and Societal (jdl negie
Systems Department Mellon

Uniw

NOTE: Beware adding dependencies

* LLM's love to add new dependencies. This
can:

* Increase complexity + technical debt

* (Causelicense problems
* Duplicate effort

Adding dependencies is unlikely to be the

right answer. Be VERY CARFUL of added
dependencies.

hl = L
Software and Societal Car negie
Systems Department

Mellon

University

	Title
	Slide 1: Open Source

	Administrivia
	Slide 2: Administrivia

	Opening
	Slide 3: Learning Goals
	Slide 4: Open Source
	Slide 5: Background: laws and open source
	Slide 6
	Slide 7: What is Open-Source Software?
	Slide 8
	Slide 9: What is Open-Source Software (OSS)?
	Slide 10: Contrast with proprietary software: a black box
	Slide 11
	Slide 12: Why Go Open Source (vs. Proprietary) ?
	Slide 13: Why Go Open Source (vs. Proprietary) ?
	Slide 14: Early open source: UNIX to BSD
	Slide 15: The BSD License is Permissive
	Slide 16: UNIX to GNU’s Not Unix
	Slide 17: Free software as a Philosophy
	Slide 18: Free software as a Philosophy
	Slide 19: Copyleft v. permissive
	Slide 20: GNU/Linux (1991-Today)
	Slide 21: Free Software vs. Open Source
	Slide 22: Netscape’s open source gambit
	Slide 23: Netscape creates a new license and model
	Slide 24
	Slide 25: Open-Source Ecosystems
	Slide 26: The Cathedral and the Bazaar
	Slide 27: The Bazaar won
	Slide 28: OSS has many stakeholders / contributors
	Slide 29: Contributing processes
	Slide 30: Governence
	Slide 31: Example: Apache
	Slide 32: Corporate outlook towards open-source has evolved over the years
	Slide 33: Risks in not open-sourcing?
	Slide 34: Use of open source software within companies
	Slide 35
	Slide 36: Software Licenses
	Slide 37
	Slide 38: Which license to choose?
	Slide 39: GNU General Public License: The Copyleft License
	Slide 41: Risks of “copyleft” licenses
	Slide 42: Lesser GNU Public License (LGPL)
	Slide 43: MIT License
	Slide 44: Apache License
	Slide 45: BSD License
	Slide 46: Creative Commons (CC)
	Slide 47: Dual License Business Model
	Slide 48: Risk: Incompatible Licenses
	Slide 49: Copyright vs. Intellectual Property (IP)
	Slide 50: Contributor Licensing Agreements (CLA)
	Slide 51: Dependency Management
	Slide 52: Left-pad (March 22, 2016)
	Slide 53: Left-pad (March 22, 2016)
	Slide 54: Left-pad (Docs)
	Slide 55: Left-pad (Source Code)
	Slide 56: See also: isArray
	Slide 58
	Slide 59: Dependency Management
	Slide 60: What is a Dependency?
	Slide 61: Dependencies: Example
	Slide 62: Where are the dependencies hosted?
	Slide 63: Transitive Dependencies
	Slide 64: Diamond Dependencies
	Slide 65: Diamond Dependencies
	Slide 66: Resolutions to the Diamond Problem
	Slide 67: Semantic Versioning
	Slide 68: https://semver.org/
	Slide 69: People rely on SemVer contracts
	Slide 70: Dependency Constraints
	Slide 71: Semantic Versioning Contracts
	Slide 72: Cyclic Dependencies
	Slide 73: Cyclic Dependencies
	Slide 74: Dependency Security
	Slide 75: NOTE: Beware adding dependencies

