
Open Source
17-313: Foundations of Software Engineering

https://cmu-313.github.io

Michael Hilton and Chris Timperley

Fall 2025

https://cmu-313.github.io/
https://cmu-313.github.io/
https://cmu-313.github.io/

Administrivia

• Teamwork survey deployed today. We will have a survey after the
lecture as well

• Guest Lecture next Tuesday – PLEASE ARRIVE ON TIME!

• Project 4 Checkpoint 1 extended to Friday

• NOTE: You must be present DURING THE PARTICIPATION activity
for participation points

Learning Goals

• Distinguish between open-source software, free software, and commercial
software.

• Identify the common types of software licenses and their implications.

• Distinguish between copyright and intellectual property.

• Express an educated opinion on the philosophical/political debate between
open source and proprietary principles.

• Describe how open-source ecosystems work and evolve, in terms of
maintainers, community contribution, and commercial backing

• Identify various concerns of commercial entities in leveraging open-source,
as well as strategies to mitigate these.

Open Source

Background: laws and open source

• Copyright protects creative, intellectual and artistic works —
including software

• Alternative: public domain (nobody may claim exclusive property
rights)

• Trademark protects the name and logo of a product

• OSS is generally copyrighted, with copyright retained by
contributors or assigned to entity that maintains it

• Copyright holder can grant a license for use, placing restrictions
on how it can be used (perhaps for a fee)

5

https://xkcd.com/2347/

What is Open-Source
Software?

Open-source Proprietary

What is Open-Source Software (OSS)?

• Source code availability

• Right to modify and creative derivative works

• (Often) Right to redistribute derivate works

Contrast with proprietary software: a black box

• Intention is to be used, not examined, inspected, or modified.

• No source code – only download a binary (e.g., an app) or use via
the internet (e.g., a web service).

• Often contains an End User License Agreement (EULA) governing
rights and liabilities.

• EULAs may specifically prohibit attempts to understand
application internals.

Example: Bank
app on my phone

Why Go Open Source (vs. Proprietary) ?

Advantages

• <today’s activity; do in groups>

Disadvantages

Why Go Open Source (vs. Proprietary) ?

Advantages

• Transparency, gain user trust

• Many eyes: crowd-source bug
reports and fixes

• Security: more likely for
vulnerabilities to be quickly identified

• Community and adoption: get others
to contribute features, build stuff
around you, or fork your project

Disadvantages

• Reveal implementation secrets

• Many eyes: users can find faults
more easily

• Security: more likely for others to
find vulnerabilities first

• Control: You may not be able to
influence the long-term direction of
your platform

Early open source: UNIX to BSD

• Hardware was not yet standardized, computer vendors
focused on hardware, building new operating systems for
each platform

• Much software development focused in
academic labs, and AT&T’s Bell Labs

• Unix created at Bell Labs using the new,
portable language “C”, licenses initially
released with source code

• 1978: UC Berkeley begins distributing
their own derived version of Unix (BSD)

• AT&T is prohibited from entering new
telecommunications businesses
(can’t make OS a product)

14

IBM 704 at NASA Langley in 1957 (Public domain)

The BSD License is Permissive

• Authors of BSD created a license for the OS that:

1. Required those using it to credit the university

2. Limited liability for (mis)-use

15

BSD Copyright in OS X boot sequence

Copyright (c) <year>, <copyright holder> All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1.Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer .
2.Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
3.All advertising materials mentioning features or use of this software must display the following acknowledgement: This product includes software developed by the <copyright holder> .

4.Neither the name of the <copyright holder> nor the names of its contributors may be used to endorse or promote products derived from this software without specific pr ior written permission.
THIS SOFTWARE IS PROVIDED BY <COPYRIGHT HOLDER> AS IS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED…. (move waivers of liability)

Original BSD license

UNIX to GNU’s Not Unix

• Timeline

• 1978: UC Berkeley begins distributing
their own derived version of Unix (BSD)

• 1983: AT&T broken up by DOJ, UNIX
licensing changed: no more source releases

• Competing commercial vendors all package and
sell their derivations of UNIX (AT&T, HP, Sun, IBM,
SGI)

• Also 1983: “Starting this Thanksgiving I am going to
write a complete Unix-compatible software system
called GNU (Gnu’s Not Unix), and give it away free
to everyone who can use it”

16

GNU logo (a gnu wildebeest)

Free software as a Philosophy

• “Free as in Speech, not as in beer”
Richard Stallman’s Free Software Foundation — free as in

liberties

• Freedom 0: run code as you wish, for any purpose

• Freedom 1: study how code works, and
change it as you wish

• Freedom 2: redistributed copies (of original) so
you can help others

• Freedom 3: distribute copies of your modified
version to others

17

Richard M Stallman (Licensed under GFDL)

Free software as a Philosophy

• “Free as in Speech, not as in beer”

FSF: software licensed under GNU Public License (GPL), considering questions
like:

• Required to redistribute modifications (under same license)? Yes, “copyleft"

• Can you combine it with more restrictive licenses? No, not even with BSD!

Alternative (more like BSD):
“Do whatever you want with this software, but don’t blame me if it doesn’t work” freeware

18

Copyleft v. permissive

• Can I combine OSS with my product, releasing my product under
a different license (perhaps not even OS)?

• Permissive licenses encourage adoption by permitting this
practice

• Copyleft “protects the commons” by having all linked code under
same license, transitively requiring more sharing

• Philosophy: do we force participation, or try to grow/incentivize it
in other ways?

19

GNU/Linux (1991-Today)

• Stallman set out to build an operating system in 1983, ended up
building utilities needed by an operating system (compiler, etc)

• Linux is built around and with the GNU utilities, licensed under
GPL

• Rise of the internet, demand for internet servers drives demand
for cheap/free OS

• Companies adopted and support Linux for enterprise customers

• IBM committed over $1B; Red Hat and others

20

Free Software vs. Open Source

• Free software origins (70-80s ~Stallman)
● Cultish Political goal
● Software part of free speech

● free exchange, free modification
● proprietary software is unethical
● security, trust

● GNU project, Linux, GPL license

• Open source (1998 ~O'Reilly)
● Rebranding without political legacy
● Emphasis on internet and large dev/user involvement
● Openness toward proprietary software/coexist
● (Think: Netscape becoming Mozilla)

Netscape’s open source gambit

• Netscape was dominant web browser early 90’s

• Business model: free for home and education use,
companies pay

• Microsoft entered browser market with Internet
Explorer, bundled with Windows95, soon
overtakes Netscape in usage (free with Windows)

• January 1998: Netscape first company to open
source code for proprietary product (Mozilla)

22

Usage Share of Netscape Navigator

Netscape creates a new license and model

• Until Netscape, much of OSS was the FSF and its GPL

• Open Source coined in 1998 by the Open Source Initiative
to capture Netscape’s aim for an open development
process

• New licenses follow, e.g. MIT, Apache, etc. just like BSD, but
without the advertising part

• Publisher Tim O’Reilly organizes a Freeware Summit later in
1998, soon rebranded as Open Source Summit

• Open Source is a development methodology; free software
is a social movement

— Richard Stallman

23

Tim O’Reilly
Photo via Christopher Michel/F lickr, CC BY 2.0

Open source initiative logo

Perception (from some):

• Anarchy

• Demagoguery

• Ideology

• Altruism

Open-Source Ecosystems
How OSS is developed

The Cathedral and the Bazaar

The Bazaar won

Cathedral

• Developed centrally by a
core group of members

• Available for all once
complete (or at releases)

• Examples: GNU Emacs, GCC
(back in the 1990s)

• “Sort-of” examples today:
Chrome, IntelliJ

Bazaar

• Developed openly and
organically

• Wide participation (in
theory, anyone can
contribute)

• Examples: Linux

OSS has many stakeholders / contributors

• Core members
• Often (but not always) includes the original creators
• Direct push access to main repository
• May be further split into admin roles and developers

• External contributors
• File bug reports and report other issues
• Contribute code and documentation via pull requests

• Other supporters
• Beta testers (users)
• Sponsors (financial or platform)
• Steering committees or public commenters (for standards and RFCs)

• Spin-offs
• Maintainers of forks of the original repository

Contributing processes

• Mature OSS projects often have strict contribution
guidelines

• Look for CONTRIBUTING.md or similar

• Common requirements:
• Coding style (recall: linters) and passing static checks

• Inclusion of test cases with new code

• Minimum number of code reviews from core devs

• Standards for documentation

• Contributing licensing agreements (more on that later)

Governence

• Some OSS projects are managed by for-profit firms

• Examples: Chromium (Google), Moby (Docker), Ubuntu (Canonical), TensorFlow (Google),
PyTorch (Meta), Java (Oracle)

• Contributors may be a mix of employees and community volunteers

• Corporations often fund platforms (websites, test servers, deployments, repository hosting,
etc.)

• Corporations usually control long-term vision and feature roadmap

• Many OSS projects are managed by non-profit foundations or ad-hoc communities

• Examples: Apache Hadoop/Spark/Hbase/Kafka/Tomcat (ASF), Firefox (Mozilla), Python (PSF),
NumPy (community)

• Foundations fund project infrastructure via charitable donations

• Long-term vision often developed via a collaborative process (e.g., Apache) or by benevolent
dictators (e.g., Python, Linux)

• Corporations still heavily rely on community-owned OSS projects

• Many OSS non-profits are funded by Big Tech (e.g., Mozilla by Google)

Example: Apache

https://www.apache.org/theapacheway/

Corporate outlook towards open-source has
evolved over the years

“…most of you steal your software…”

Risks in not open-sourcing?

Use of open source software within companies

• Is the license compatible with our intended use?

• More on this later

• How will we handle versioning and updates?

• Does every internal project declare its own versioned dependency or do we all agree on
using one fixed (e.g., latest) version?

• Sometimes resolved by assigning internal “owners” of a third-party dependency, who are
responsible for testing updates and declaring allowable versions.

• How to handle customization of the OSS software?

• Internal forks are useful but hard to sync with upstream changes.

• One option: Assign an internal owner who keeps internal fork up-to-date with upstream.

• Another option: Contribute all customizations back to upstream to maintain clean
dependencies.

• Security risks? Supply chain attacks on the rise.

https://xkcd.com/2347/

Software Licenses
Note: I am not a lawyer (this is not legal advice)

https://www.statista.com/statistics/1245643/worldwide-leading-open-source-licenses/

Which license to choose?

GNU General Public License: The Copyleft License

• Nobody should be restricted by the software they use. There are
four freedoms that every user should have:
● the freedom to use the software for any purpose,

● the freedom to change the software to suit your needs,

● the freedom to share the software with your friends and neighbors, and

● the freedom to share the changes you make.

• Code must be made available

• Any modifications must be relicensed under the same license
(copyleft)

Risks of “copyleft” licenses

• Example: GNU GPL

• Require licensing derivative works also with same license
• This is intentional!

• Depending on a GPL project from within a proprietary or
differently-licensed codebase is disaster
• Viral effect of polluting everything else with GPL requirement

• Most companies will avoid GPL code with a ten-foot pole
• Expect vetting process before engineers are allowed to use third-party

libraries from GitHub, etc.

Lesser GNU Public License (LGPL)

• Software must be a library

• Similar to GPL but does not consider dynamic binding as
“derivative work”

• So, proprietary code can depend on LGPL libraries as long as
they are not being modified

• See also: GPL with classpath exception (e.g., Oracle JDK)

MIT License

• Simple, commercial-friendly license

• Must retain copyright credit

• Software is provided as is

• Authors are not liable for software

• No other restrictions

Apache License

• Similar to MIT license

• Not copyleft

• Not required to distribute source code

• Does not grant permission to use project’s trademark

• Does not require modifications to use the same license

BSD License

• No liability and provided as is.

• Copyright statement must be included in source and binary

• The copyright holder does not endorse any extensions without
explicit written consent

Creative Commons (CC)

• More common for licensing data-sets instead of code
• Examples: images, websites, documentation, slides, plots, videos

• CC-BY (attribution only; derivatives allowed)

• CC-BY-SA (attribution and share-alike for derivates)

• CC-BY-ND (attribution and no derivatives)

Dual License Business Model

• Released as GPL which
requires a company
using the open source
product to open
source it’s application

• Or companies can pay
$2,000 to $10,000
annually to receive a
copy of MySQL with a
more business friendly
license

Risk: Incompatible Licenses

• Sun open-sourced OpenOffice, but when Sun was acquired by
Oracle, Oracle temporarily stopped the project.

• Many of the community contributors banded together and
created LibreOffice

• Oracle eventually released OpenOffice to Apache

• LibreOffice changed the project license so LibreOffice can copy
changes from OpenOffice but OpenOffice cannot do the same
due to license conflicts

Copyright vs. Intellectual Property (IP)

• IP and Patents cover an idea for solving a problem
• Examples: Machine designs, pharma processes to manufacture certain

drugs, (controversially) algorithms

• Have expiry dates. IP can be licensed or sold/transferred for $$$.

• Copyrights cover particular expressions of some work
• Examples: Books, music, art, source code

• Automatic copyright assignment to all new work unless a license
authorizes alternative uses.

• Exceptions for trivial works and ideas.

Contributor Licensing Agreements (CLA)

• Often a requirement to sign these before you can contribute to
OSS projects
• Scoped only to that project

• Assigns the maintainers specific rights over code that you
contribute
• Without this, you own the copyright and IP for even small bug fixes and

that can cause them legal headaches in the future

Dependency Management

Left-pad (March 22, 2016)

Left-pad (March 22, 2016)

Left-pad (Docs)

Left-pad (Source Code)

See also: isArray

Dependency Management

• It’s hard

• It’s mostly a mess (everywhere)

• But it’s critical to modern software
development

What is a Dependency?

• Core of what most build systems do
• “Compile” and “Run Tests” is just a fraction of their job

• Examples: Maven, Gradle, NPM, Bazel, …

• Foo->Bar: To build Foo, you may need to have a
built version of Bar

• Dependency Scopes:
• Compile: Foo uses classes, functions, etc. defined by Bar

• Runtime: Foo uses an abstract API whose implementation is
provided by Bar (e.g. logging, database, network or other I/O)

• Test: Foo needs Bar only for tests (e.g. JUnit, mocks)

• Internal vs. External Dependencies
• Is Bar also built/maintained by your org or is it pulled from elsewhere

using a package manager?

Dependencies: Example

Where are the dependencies
hosted?
• Typically downloaded from dependency servers:

• Maven Central (https://repo.maven.apache.org/maven2/)

• Ubuntu Packages for Apt (https://packages.ubuntu.com/)

• Python Package Index (https://pypi.org/)]

• NPM Public Registry (https://registry.npmjs.org/)

• Packages need a unique identifier
• Typically a package name (sometimes owner name) and version

• Custom repositories allowed by most package managers
• Often used for company-internal packages or cache mirroring

• Note problems with duplicates (same package name in different repositories; some
priority order is needed)

• Somebody needs to manage repositories
• Availability: Repository needs to be running

• Access Control: Packages should only be published by owners

• Integrity: Packages should be signed or otherwise verifiable

• Uniqueness and archival: Only one artifact per version

• Traceability: Packages can have metadata pointing to source or tests

• Security: ???

https://repo.maven.apache.org/maven2/
https://packages.ubuntu.com/
https://pypi.org/
https://registry.npmjs.org/

Transitive Dependencies

Packages can depend on other packages

Git SSH-client

libSSL

zLib

Q: Should Git be able to use exports of libSSL (e.g. certificate
management) or zLib (e.g. gzip compression)?

Diamond Dependencies

What are some problems when multiple
intermediate dependencies have the same
transitive dependency?

Git

SSH-Client

libSSL

libHTTP

Generally, can also be across levels

Git

SSH-
Client

zLib

libSSSL

libHTTP

Diamond Dependencies

What are some problems when multiple
intermediate dependencies have the same
transitive dependency?

Git 2.17.1

SSH-Client 1.7.6
libSSL 1.0.2

libHTTP 2.14 libSSL 1.1

Resolutions to the Diamond
Problem
1. Duplicate it!

• Doesn’t work with static linking (e.g. C/C++), but may be doable with Java (e.g.
using ClassLoader hacking or package renaming)

• Values of types defined by duplicated libraries cannot be exchanged across

2. Ban transitive dependencies; just use a global list with one version for each

• Challenge: Keeping things in sync with latest

• Challenge: Deciding which version of transitive deps to keep

3. Newest version (keep everything at latest)

• Requires ordering semantics

• Intermediate dependency may break with update to transitive

4. Oldest version (lowest denominator)

• Also requires ordering semantics

• Sacrifices new functionality

5. Oldest non-breaking version / Newest non-breaking version

• Requires faith in tests or semantic versioning contract

Semantic Versioning

• Widely used convention for versioning releases

• E.g. 1.2.1, 3.1.0-alpha-1, 3.1.0-alpha-2, 3.1.0-beta-1, 3.1.0-rc1

• Format: {MAJOR} . {MINOR} . {PATCH}

• Each component is ordered (numerically, then lexicographically; release-aware)

• 1.2.1 < 1.10.1

• 3.1.0-alpha-1 < 3.1.0-alpha-2 < 3.1.0-beta-1 < 3.1.0-rc1 < 3.1.0

• Contracts:

• MAJOR updated to indicate breaking changes

• Same MAJOR version => backward compatibility

• MINOR updated for additive changes

• Same MINOR version => API compatibility (important for linking)

• PATCH updates functionality without new API

• Ninja edit; usually for bug fixes

https://semver.org/

People rely on SemVer contracts

Dependency Constraints

• E.g. Declare dependency on ”Bar > 2.1”
• Bar 2.1.0, 2.1.1, 2.2.0, 2.9.0, etc. all match

• 2.0.x does NOT match

• 3.0.x does NOT match

• Diamond dependency problem can be
resolved using SAT solvers

• E.g. Foo 1.0.0 depends on “Bar >= 2.1” and “Baz 1.8.x”

• Bar 2.1.0 depends on “Qux [1.6, 1.7]”

• Bar 2.1.1 depends on “Qux 1.7.0”

• Baz 1.8.0 depends on “Qux 1.5.x”

• Baz 1.8.1 depends on “Qux 1.6.x”

• Find an assignment such that all dependencies are satisfied

• Solution: Use Bar 2.1.0, Baz 1.8.1, and Qux 1.6.{latest}

Semantic Versioning Contracts

• Largely trusting developers to maintain them

• Constrained/range dependencies can cause
unexpected build failures

• Automatic validation of SemVer is hard

Cyclic Dependencies

• A very bad thing

• Avoid at all costs

• Sometimes unavoidable or intentional
• E.g. GCC is written in C (needs a C compiler)

• E.g. Apache Maven uses the Maven build system

• E.g. JDK tested using JUnit, which requires the JDK to compile

A B

Cyclic Dependencies

• Bootstrapping: Break cycles over time

• Assume older version exists in binary (pre-built form)

• Step 1: Build A using an older version of B

• Step 2: Build B using new (just built) version of A

• Step 3: Rebuild A using new (just built) version of B

• Now, both A and B have been built with new versions of their dependencies

• Doesn’t work if both A and B need new features of each other at the same time
(otherwise Step 1 won’t work)

• Assumes incremental dependence on new features

• How was the old version built in the first place? (it’s turtles all the way down)

• Assumption: cycles did not exist in the past

• Successfully applied in compilers (e.g. GCC is written in C)

Dependency Security

• Will you let strangers execute arbitrary code on your laptop?

• Think about this every time you do “pip install” or “npm install” or “apt-get
updgrade” or “brew updgrade” or whatever (esp. with sudo)

• Scary, right? Who are you trusting? Why?

• Typo squatting (“pip install numpi”)

• Outright malice (remember the event-stream incident?)

• Genuine security vulnerabilities due to software bugs

NOTE: Beware adding dependencies

• LLM’s love to add new dependencies. This
can:
• Increase complexity + technical debt

• Cause license problems

• Duplicate effort

Adding dependencies is unlikely to be the
right answer. Be VERY CARFUL of added
dependencies.

	Title
	Slide 1: Open Source

	Administrivia
	Slide 2: Administrivia

	Opening
	Slide 3: Learning Goals
	Slide 4: Open Source
	Slide 5: Background: laws and open source
	Slide 6
	Slide 7: What is Open-Source Software?
	Slide 8
	Slide 9: What is Open-Source Software (OSS)?
	Slide 10: Contrast with proprietary software: a black box
	Slide 11
	Slide 12: Why Go Open Source (vs. Proprietary) ?
	Slide 13: Why Go Open Source (vs. Proprietary) ?
	Slide 14: Early open source: UNIX to BSD
	Slide 15: The BSD License is Permissive
	Slide 16: UNIX to GNU’s Not Unix
	Slide 17: Free software as a Philosophy
	Slide 18: Free software as a Philosophy
	Slide 19: Copyleft v. permissive
	Slide 20: GNU/Linux (1991-Today)
	Slide 21: Free Software vs. Open Source
	Slide 22: Netscape’s open source gambit
	Slide 23: Netscape creates a new license and model
	Slide 24
	Slide 25: Open-Source Ecosystems
	Slide 26: The Cathedral and the Bazaar
	Slide 27: The Bazaar won
	Slide 28: OSS has many stakeholders / contributors
	Slide 29: Contributing processes
	Slide 30: Governence
	Slide 31: Example: Apache
	Slide 32: Corporate outlook towards open-source has evolved over the years
	Slide 33: Risks in not open-sourcing?
	Slide 34: Use of open source software within companies
	Slide 35
	Slide 36: Software Licenses
	Slide 37
	Slide 38: Which license to choose?
	Slide 39: GNU General Public License: The Copyleft License
	Slide 41: Risks of “copyleft” licenses
	Slide 42: Lesser GNU Public License (LGPL)
	Slide 43: MIT License
	Slide 44: Apache License
	Slide 45: BSD License
	Slide 46: Creative Commons (CC)
	Slide 47: Dual License Business Model
	Slide 48: Risk: Incompatible Licenses
	Slide 49: Copyright vs. Intellectual Property (IP)
	Slide 50: Contributor Licensing Agreements (CLA)
	Slide 51: Dependency Management
	Slide 52: Left-pad (March 22, 2016)
	Slide 53: Left-pad (March 22, 2016)
	Slide 54: Left-pad (Docs)
	Slide 55: Left-pad (Source Code)
	Slide 56: See also: isArray
	Slide 58
	Slide 59: Dependency Management
	Slide 60: What is a Dependency?
	Slide 61: Dependencies: Example
	Slide 62: Where are the dependencies hosted?
	Slide 63: Transitive Dependencies
	Slide 64: Diamond Dependencies
	Slide 65: Diamond Dependencies
	Slide 66: Resolutions to the Diamond Problem
	Slide 67: Semantic Versioning
	Slide 68: https://semver.org/
	Slide 69: People rely on SemVer contracts
	Slide 70: Dependency Constraints
	Slide 71: Semantic Versioning Contracts
	Slide 72: Cyclic Dependencies
	Slide 73: Cyclic Dependencies
	Slide 74: Dependency Security
	Slide 75: NOTE: Beware adding dependencies

