
Software Dependencies
17-313 Fall 2024

Foundations of Software Engineering

https://cmu-313.github.io

Michael Hilton and Rohan Padhye

https://cmu-313.github.io/


Administrivia

• P4 final due Friday night

• P5 released (select projects by Tue, Nov 19th; 
checkpoint slides due Sun, Nov 25th—presentation next day)

• Midterm 2 next week (Thu, Nov 21st)



Left-pad (March 22, 2016)

3



Left-pad (March 22, 2016)

4



Left-pad (Docs)

5



Left-pad (Source Code)

6



See also: isArray

7



How do software projects manage third-party 
dependencies on reusable libraries?

● It’s hard
● It’s mostly a mess (everywhere)
● But it’s critical to modern software development

8



What is a Dependency?

● Core of what most build systems do
○ “Compile” and “Run Tests” is just a fraction of their job

● Examples: Maven, Gradle, NPM, Bazel, …
● Foo->Bar: To build Foo, you may need to have a built version of Bar
● Dependency Scopes: 

○ Compile: Foo uses classes, functions, etc. defined by Bar 
○ Runtime: Foo uses an abstract API whose implementation is provided by Bar 

(e.g. logging, database, network or other I/O)
○ Test: Foo needs Bar only for tests (e.g. JUnit, mocks)

● Internal vs. External Dependencies
○ Is Bar also built/maintained by your org or is it pulled from elsewhere using a 

package manager?

9



Examples of dependency views

1
0



Where are the dependencies hosted?
● Typically downloaded from dependency servers:

○ Maven Central (https://repo.maven.apache.org/maven2/)
○ Ubuntu Packages for Apt (https://packages.ubuntu.com/)
○ Python Package Index (https://pypi.org/) ]
○ NPM Public Registry (https://registry.npmjs.org/) 

● Packages need a unique identifier
○ Typically a package name (sometimes owner name) and version

● Custom repositories allowed by most package managers
○ Often used for company-internal packages or cache mirroring
○ Note problems with duplicates (same pkg name in different repositories; some priority order is needed)

● Somebody needs to manage repositories
○ Availability: Repository needs to be running
○ Access Control: Packages should only be published by owners
○ Integrity: Packages should be signed or otherwise verifiable
○ Uniqueness and archival: Only one artifact per version
○ Traceability: Packages can have metadata pointing to source or tests
○ Security: ???

https://repo.maven.apache.org/maven2/
https://packages.ubuntu.com/
https://pypi.org/
https://registry.npmjs.org/


Demo: Deps.dev



Dependency Pinning vs. Floating

● Pinning: ”I depend on libFoo 1.5.0”
○ Declares a specific version of the dependency. Frozen in time.

● Floating: “I depend on libFoo-latest”
○ Each build will pull the latest available libFoo version
○ (Other forms available, e.g. libFoo 1.5.x)

● Activity (groups of 2-3; write names and Andrew ID)
○ 1 advantage of pinning over floating
○ 1 advantage of floating over pinning



Pinned dependencies requires manual 
updates in case of security issues 

cookie 
0.6.0

cookie 
0.7.1



Is Pinning Sinning?

Pinning Dependencies (e.g. 1.5.3)
 Reproducible builds

 Can become vulnerable due to 
dependency bugs

 Have to keep updating dependents 
as dependencies evolve

 Stable network effects

Floating Dependencies (e.g. 1.x)
 Flaky builds (breaking changes)

 Latest security patches & bug fixes

 Less manual maintenance

 Floats leak transitively
(A pin to B floating C; then A still sees changing 
version of C)



Transitive Dependencies

1
6

Packages can depend on other packages

Git SSH-client

libSSL

zLib

Q: Should Git be able to use exports of libSSL (e.g. certificate 
management) or zLib (e.g. gzip compression)?

(compression)

(crypto, certificates)

(remote login &
file transfer)

(repository management)



Diamond Dependencies
What are some problems when multiple intermediate 
dependencies have the same transitive dependency?

1
7

Git

SSH-Client

libSSL

libHTTP

Generally, can also be across levels

Git

SSH-
Client

zLib

libSSSL

libHTTP



Diamond Dependencies
What are some problems when multiple intermediate 
dependencies have the same transitive dependency?

1
8

Git 2.17.1

SSH-Client 1.7.6
libSSL 1.0.2

libHTTP 2.14 libSSL 1.1



Resolutions to the Diamond Problem

1. Duplicate it!
○ Doesn’t work with static linking (e.g. C/C++), but may be doable with Java (e.g. using 

ClassLoader hacking or package renaming)
○ Values of types defined by duplicated libraries cannot be exchanged across

2. Ban transitive dependencies; just use a global list with one version for each
○ Challenge: Keeping things in sync with latest
○ Challenge: Deciding which version of transitive deps to keep

3. Newest version (keep everything at latest)
○ Requires ordering semantics
○ Intermediate dependency may break with update to transitive

4. Oldest version (lowest denominator)
○ Also requires ordering semantics
○ Sacrifices new functionality

5. Oldest non-breaking version / Newest non-breaking version
○ Requires faith in tests or semantic versioning contract

1
9



Semantic Versioning

● Widely used convention for versioning releases
○ E.g. 1.2.1, 3.1.0-alpha-1, 3.1.0-alpha-2, 3.1.0-beta-1, 3.1.0-rc1

● Format: {MAJOR} . {MINOR} . {PATCH}
● Each component is ordered (numerically, then lexicographically; release-aware)

○ 1.2.1 < 1.10.1
○ 3.1.0-alpha-1 < 3.1.0-alpha-2 < 3.1.0-beta-1 < 3.1.0-rc1 < 3.1.0

● Contracts:
○ MAJOR updated to indicate breaking changes

■ Same MA JOR version => backward compatibility
○ MINOR updated for additive changes

■ Same MINOR version => API compatibility (important for linking)
○ PATCH updates functionality without new API 

■ Ninja edit; usually for bug fixes
● Largely dependent on honor system. No easy way to automatically verify (can you solve it?)

2
0



https://semver.org/

2
1



People rely on SemVer contracts

2
2

(I got this ”bug report” on one of my own research projects)



Dependency Constraints

● E.g. Declare dependency on ”Bar > 2.1”
○ Bar 2.1.0, 2.1.1, 2.2.0, 2.9.0, etc. all match
○ 2.0.x does NOT match
○ 3.0.x does NOT match

● Diamond dependency problem can be resolved using SAT 
solvers
○ E.g. Foo 1.0.0 depends on “Bar >= 2.1” and “Baz 1.8.x”

■ Bar 2.1.0 depends on “Qux [1.6, 1.7]” 
■ Bar 2.1.1 depends on “Qux 1.7.0”
■ Baz 1.8.0 depends on “Qux 1.5.x” 
■ Baz 1.8.1 depends on “Qux 1.6.x”

○ Find an assignment such that all dependencies are satisfied
■ Solution: Use Bar 2.1.0, Baz 1.8.1, and Qux 1.6.{latest}

2
3



Cyclic Dependencies

● A very bad thing
● Avoid at all costs
● Sometimes unavoidable or intentional

○ E.g. GCC is written in C (needs a C compiler)
○ E.g. Apache Maven uses the Maven build system
○ E.g. JDK tested using JUnit, which requires the JDK to compile

2
4

A B



Cyclic Dependencies

● Bootstrapping: Break cycles over time
● Assume older version exists in binary (pre-built form)
● Step 1: Build A using an older version of B
● Step 2: Build B using new (just built) version of A
● Step 3: Rebuild A using new (just built) version of B
● Now, both A and B have been built with new versions of their dependencies
● Doesn’t work if both A and B need new features of each other at the same 

time (otherwise Step 1 won’t work)
○ Assumes incremental dependence on new features

● How was the old version built in the first place? (turtles all the way down)
○ Assumption: cycles did not exist in the past
○ Successfully applied in compilers (e.g. GCC is written in C)

2
5



Dependency Security

● Will you let strangers execute arbitrary code on your laptop?
○ Think about this every time you do “pip install” or “npm install” or “apt-get updgrade” 

or “brew updgrade” or whatever (esp. with sudo)
○ Scary, right? Who are you trusting? Why?

● Typo squatting (“pip install numpi”)
● Outright malice (search for the xz-utils backdoor incident)
● Genuine security vulnerabilities due to software bugs (e.g. log4j)

2
6

https://www.wired.com/story/xz-backdoor-everything-you-need-to-know/ 

https://www.wired.com/story/xz-backdoor-everything-you-need-to-know/


Takeaways

● Dependency management is hard.

2
7


	Slide 1: Software Dependencies
	Slide 2: Administrivia
	Slide 3: Left-pad (March 22, 2016)
	Slide 4: Left-pad (March 22, 2016)
	Slide 5: Left-pad (Docs)
	Slide 6: Left-pad (Source Code)
	Slide 7: See also: isArray
	Slide 8: How do software projects manage third-party dependencies on reusable libraries?
	Slide 9: What is a Dependency?
	Slide 10: Examples of dependency views
	Slide 11: Where are the dependencies hosted?
	Slide 12: Demo: Deps.dev
	Slide 13: Dependency Pinning vs. Floating
	Slide 14: Pinned dependencies requires manual updates in case of security issues 
	Slide 15: Is Pinning Sinning?
	Slide 16: Transitive Dependencies
	Slide 17: Diamond Dependencies
	Slide 18: Diamond Dependencies
	Slide 19: Resolutions to the Diamond Problem
	Slide 20: Semantic Versioning
	Slide 21: https://semver.org/
	Slide 22: People rely on SemVer contracts
	Slide 23: Dependency Constraints
	Slide 24: Cyclic Dependencies
	Slide 25: Cyclic Dependencies
	Slide 26: Dependency Security
	Slide 27: Takeaways

