
Open Source
17-313 Spring 2024

Foundations of Software Engineering

https://cmu-313.github.io

Michael Hilton and Eduardo Feo Flushing

https://cmu-313.github.io/

Administrivia

• P4 Clarification

• Midterm 2 review session in recitation 4/15

• Final Exam attendance Mandatory:
• Monday, April 29, 2024 05:30pm-08:30pm

• If you will be celebrating Passover, let us know ASAP to support
alternatives.

• Conflicts come talk to us as well

Learning Goals

• Distinguish between open-source software, free software, and commercial
software.

• Identify the common types of software licenses and their implications.

• Distinguish between copyright and intellectual property.

• Express an educated opinion on the philosophical/political debate between
open source and proprietary principles.

• Describe how open-source ecosystems work and evolve, in terms of
maintainers, community contribution, and commercial backing

• Identify various concerns of commercial entities in leveraging open-source,
as well as strategies to mitigate these.

Background: laws and open source

• Copyright protects creative, intellectual and artistic works —
including software

• Alternative: public domain (nobody may claim exclusive
property rights)

• Trademark protects the name and logo of a product

• OSS is generally copyrighted, with copyright retained by
contributors or assigned to entity that maintains it

• Copyright holder can grant a license for use, placing
restrictions on how it can be used (perhaps for a fee)

https://xkcd.com/2347/

What is Open-Source
Software?

Open-source Proprietary

What is Open-Source Software (OSS)?

• Source code availability

• Right to modify and creative derivative works

• (Often) Right to redistribute derivate works

Contrast with proprietary software: a black box

• Intention is to be used, not examined, inspected, or
modified.

• No source code – only download a binary (e.g., an app) or
use via the internet (e.g., a web service).

• Often contains an End User License Agreement (EULA)
governing rights and liabilities.

• EULAs may specifically prohibit attempts to understand
application internals.

Example: Bank app

on my phone

Early open source: UNIX to BSD

• Hardware was not yet standardized, computer vendors focused
on hardware, building new operating systems for each platform

• Much software development focused in
academic labs, and AT&T’s Bell Labs

• Unix created at Bell Labs using the new,
portable language “C”, licenses initially
released with source code

• 1978: UC Berkeley begins distributing
their own derived version of Unix (BSD)

• AT&T is prohibited from entering new
telecommunications businesses
(can’t make OS a product)

IBM 704 at NASA Langley in 1957 (Public domain)

The BSD License is Permissive

• Authors of BSD created a license for the OS that:

1. Required those using it to credit the university

2. Limited liability for (mis)-use

BSD Copyright in OS X boot sequence

Copyright (c) <year>, <copyright holder> All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1.Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer .
2.Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

3.All advertising materials mentioning features or use of this software must display the following acknowledgement: This product includes software developed by the <copyright holder>.

4.Neither the name of the <copyright holder> nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY <COPYRIGHT HOLDER> AS IS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED…. (move waivers of l iability)

Original BSD license

UNIX to GNU’s Not Unix

• Timeline
• 1978: UC Berkeley begins distributing

their own derived version of Unix (BSD)

• 1983: AT&T broken up by DOJ, UNIX
licensing changed: no more source releases

• Competing commercial vendors all package and
sell their derivations of UNIX (AT&T, HP, Sun, IBM,
SGI)

• Also 1983: “Starting this Thanksgiving I am going
to write a complete Unix-compatible software
system called GNU (Gnu’s Not Unix), and give it
away free to everyone who can use it”

GNU logo (a gnu wildebeest)

Free software as a Philosophy

• “Free as in Speech, not as in beer”
Richard Stallman’s Free Software Foundation —

free as in liberties

• Freedom 0: run code as you wish, for any
purpose

• Freedom 1: study how code works, and
change it as you wish

• Freedom 2: redistributed copies (of original) so
you can help others

• Freedom 3: distribute copies of your modified
version to others

Richard M Stallman (Licensed under GFDL)

Free software as a Philosophy

• “Free as in Speech, not as in beer”
FSF: software licensed under GNU Public License (GPL), considering questions

like:

• Required to redistribute modifications (under same license)? Yes, “copyleft"

• Can you combine it with more restrictive licenses? No, not even with BSD!

Alternative (more like BSD):
“Do whatever you want with this software, but don’t blame me if it doesn’t work” freeware

Copyleft v. permissive

• Can I combine OSS with my product, releasing my product
under a different license (perhaps not even OS)?

• Permissive licenses encourage adoption by permitting this
practice

• Copyleft “protects the commons” by having all linked code
under same license, transitively requiring more sharing

• Philosophy: do we force participation, or try to
grow/incentivize it in other ways?

GNU/Linux (1991-Today)
• Stallman set out to build an operating system in 1983, ended up

building utilities needed by an operating system (compiler, etc)

• Linux is built around and with the GNU utilities, licensed under
GPL

• Rise of the internet, demand for internet servers drives demand
for cheap/free OS

• Companies adopted and support Linux for enterprise customers

• IBM committed over $1B; Red Hat and others

Netscape’s open source gambit

• Netscape was dominant web browser early 90’s

• Business model: free for home and education
use, companies pay

• Microsoft entered browser market with Internet
Explorer, bundled with Windows95, soon
overtakes Netscape in usage (free with Windows)

• January 1998: Netscape first company to open
source code for proprietary product (Mozilla)

Usage Share of Netscape Navigator

Netscape creates a new license and model

• Until Netscape, much of OSS was the FSF and its GPL

• Open Source coined in 1998 by the Open Source Initiative
to capture Netscape’s aim for an open development
process

• New licenses follow, e.g. MIT, Apache, etc. just like BSD, but
without the advertising part

• Publisher Tim O’Reilly organizes a Freeware Summit later
in 1998, soon rebranded as Open Source Summit

• Open Source is a development methodology; free software is
a social movement

— Richard Stallman
Tim O’Reilly

Photo via Christopher Michel/Flickr, CC BY 2.0

Open source initiative logo

Perception (from some):

• Anarchy

• Demagoguery

• Ideology

• Altruism

Why Go Open Source (vs. Proprietary) ?

Advantages

• <today’s activity; do in
groups>

Disadvantages

• <make sure to note down
names of people sitting
next to you>

Why Go Open Source (vs. Proprietary) ?

Advantages

• Transparency, gain user trust

• Many eyes: crowd-source bug reports
and fixes

• Security: more likely for vulnerabilities
to be quickly identified

• Community and adoption: get others
to contribute features, build stuff
around you, or fork your project

Disadvantages

• Reveal implementation secrets

• Many eyes: users can find faults more
easily

• Security: more likely for others to find
vulnerabilities first

• Control: You may not be able to
influence the long-term direction of
your platnform

Open-Source Ecosystems
How OSS is developed

The Cathedral and the Bazaar

The Bazaar won

Cathedral

• Developed centrally by a
core group of members

• Available for all once
complete (or at releases)

• Examples: GNU Emacs,
GCC (back in the 1990s)

• “Sort-of” examples today:
Chrome, IntelliJ

Bazaar

• Developed openly and
organically

• Wide participation (in
theory, anyone can
contribute)

• Examples: Linux

OSS has many stakeholders /
contributors

• Core members
• Often (but not always) includes the original creators
• Direct push access to main repository
• May be further split into admin roles and developers

• External contributors
• File bug reports and report other issues
• Contribute code and documentation via pull requests

• Other supporters
• Beta testers (users)
• Sponsors (financial or platform)
• Steering committees or public commenters (for standards and RFCs)

• Spin-offs
• Maintainers of forks of the original repository

Contributing processes

• Mature OSS projects often have strict contribution
guidelines
• Look for CONTRIBUTING.md or similar

• Common requirements:
• Coding style (recall: linters) and passing static checks

• Inclusion of test cases with new code

• Minimum number of code reviews from core devs

• Standards for documentation

• Contributing licensing agreements (more on that later)

Governence

• Some OSS projects are managed by for-profit firms
• Examples: Chromium (Google), Moby (Docker), Ubuntu (Canonical), TensorFlow (Google),

PyTorch (Meta), Java (Oracle)

• Contributors may be a mix of employees and community volunteers

• Corporations often fund platforms (websites, test servers, deployments, repository
hosting, etc.)

• Corporations usually control long-term vision and feature roadmap

• Many OSS projects are managed by non-profit foundations or ad-hoc communities
• Examples: Apache Hadoop/Spark/Hbase/Kafka/Tomcat (ASF), Firefox (Mozilla), Python

(PSF), NumPy (community)

• Foundations fund project infrastructure via charitable donations

• Long-term vision often developed via a collaborative process (e.g., Apache) or by
benevolent dictators (e.g., Python, Linux)

• Corporations still heavily rely on community-owned OSS projects
• Many OSS non-profits are funded by Big Tech (e.g., Mozilla by Google)

Example: Apache

https://www.apache.org/theapacheway/

Corporate outlook towards open-
source has evolved over the years

“…most of you steal your software…”

Risks in not open-sourcing?

Use of open source software within companies

• Is the license compatible with our intended use?
• More on this later

• How will we handle versioning and updates?
• Does every internal project declare its own versioned dependency or do we all agree on

using one fixed (e.g., latest) version?

• Sometimes resolved by assigning internal “owners” of a third-party dependency, who
are responsible for testing updates and declaring allowable versions.

• How to handle customization of the OSS software?
• Internal forks are useful but hard to sync with upstream changes.

• One option: Assign an internal owner who keeps internal fork up-to-date with upstream.

• Another option: Contribute all customizations back to upstream to maintain clean
dependencies.

• Security risks? Supply chain attacks on the rise.

https://xkcd.com/2347/

Software Licenses
Note: I am not a lawyer (this is not legal advice)

https://www.statista.com/statistics/1245643/worldwide-leading-open-source-licenses/

Which license to choose?

GNU General Public License: The Copyleft License

• Nobody should be restricted by the software they use. There are
four freedoms that every user should have:
● the freedom to use the software for any purpose,

● the freedom to change the software to suit your needs,

● the freedom to share the software with your friends and neighbors, and

● the freedom to share the changes you make.

• Code must be made available

• Any modifications must be relicensed under the same license
(copyleft)

Risks of “copyleft” licenses

• Example: GNU GPL

• Require licensing derivative works also with same license
• This is intentional!

• Depending on a GPL project from within a proprietary or
differently-licensed codebase is disaster
• Viral effect of polluting everything else with GPL requirement

• Most companies will avoid GPL code with a ten-foot pole
• Expect vetting process before engineers are allowed to use third-party

libraries from GitHub, etc.

Lesser GNU Public License (LGPL)

• Software must be a library

• Similar to GPL but does not consider dynamic binding as
“derivative work”

• So, proprietary code can depend on LGPL libraries as long as
they are not being modified

• See also: GPL with classpath exception (e.g., Oracle JDK)

MIT License

• Simple, commercial-friendly license

• Must retain copyright credit

• Software is provided as is

• Authors are not liable for software

• No other restrictions

Apache License

• Similar to MIT license

• Not copyleft

• Not required to distribute source code

• Does not grant permission to use project’s trademark

• Does not require modifications to use the same license

BSD License

• No liability and provided as is.

• Copyright statement must be included in source and binary

• The copyright holder does not endorse any extensions without
explicit written consent

Creative Commons (CC)

• More common for licensing data-sets instead of code
• Examples: images, websites, documentation, slides, plots, videos

• CC-BY (attribution only; derivatives allowed)

• CC-BY-SA (attribution and share-alike for derivates)

• CC-BY-ND (attribution and no derivatives)

Dual License Business Model

• Released as GPL
which requires a
company using the
open source
product to open
source it’s
application

• Or companies can
pay $2,000 to
$10,000 annually to
receive a copy of
MySQL with a more
business friendly
license

Risk: Incompatible Licenses

• Sun open-sourced OpenOffice, but when Sun was acquired by
Oracle, Oracle temporarily stopped the project.

• Many of the community contributors banded together and
created LibreOffice

• Oracle eventually released OpenOffice to Apache

• LibreOffice changed the project license so LibreOffice can copy
changes from OpenOffice but OpenOffice cannot do the same
due to license conflicts

Copyright vs. Intellectual Property (IP)

• IP and Patents cover an idea for solving a problem
• Examples: Machine designs, pharma processes to manufacture certain

drugs, (controversially) algorithms

• Have expiry dates. IP can be licensed or sold/transferred for $$$.

• Copyrights cover particular expressions of some work
• Examples: Books, music, art, source code

• Automatic copyright assignment to all new work unless a license
authorizes alternative uses.

• Exceptions for trivial works and ideas.

Contributor Licensing Agreements (CLA)

• Often a requirement to sign these before you can contribute to
OSS projects
• Scoped only to that project

• Assigns the maintainers specific rights over code that you
contribute
• Without this, you own the copyright and IP for even small bug fixes and

that can cause them legal headaches in the future

Retrospectives

• Start doing?

• Stop doing?

• Keep doing?

Early Course Feedback

• https://forms.gle/wB5kiGerKo4avnV79

	Slide 1: Open Source
	Slide 2: Administrivia
	Slide 3: Learning Goals
	Slide 4: Background: laws and open source
	Slide 5
	Slide 6: What is Open-Source Software?
	Slide 7
	Slide 8: What is Open-Source Software (OSS)?
	Slide 9: Contrast with proprietary software: a black box
	Slide 10
	Slide 11: Early open source: UNIX to BSD
	Slide 12: The BSD License is Permissive
	Slide 13: UNIX to GNU’s Not Unix
	Slide 14: Free software as a Philosophy
	Slide 15: Free software as a Philosophy
	Slide 16: Copyleft v. permissive
	Slide 17: GNU/Linux (1991-Today)
	Slide 19: Netscape’s open source gambit
	Slide 20: Netscape creates a new license and model
	Slide 21
	Slide 22: Why Go Open Source (vs. Proprietary) ?
	Slide 23: Why Go Open Source (vs. Proprietary) ?
	Slide 24: Open-Source Ecosystems
	Slide 25: The Cathedral and the Bazaar
	Slide 26: The Bazaar won
	Slide 27: OSS has many stakeholders / contributors
	Slide 28: Contributing processes
	Slide 29: Governence
	Slide 30: Example: Apache
	Slide 31: Corporate outlook towards open-source has evolved over the years
	Slide 32: Risks in not open-sourcing?
	Slide 33: Use of open source software within companies
	Slide 34
	Slide 35: Software Licenses
	Slide 36
	Slide 37: Which license to choose?
	Slide 38: GNU General Public License: The Copyleft License
	Slide 40: Risks of “copyleft” licenses
	Slide 41: Lesser GNU Public License (LGPL)
	Slide 42: MIT License
	Slide 43: Apache License
	Slide 44: BSD License
	Slide 45: Creative Commons (CC)
	Slide 46: Dual License Business Model
	Slide 47: Risk: Incompatible Licenses
	Slide 48: Copyright vs. Intellectual Property (IP)
	Slide 49: Contributor Licensing Agreements (CLA)
	Slide 50: Retrospectives
	Slide 51: Early Course Feedback

