Reliably Releasing Software
Foundations of Software Engineering

Christopher S. Meiklejohn Carnegie Mellon University

Software Engineer, DoorDash

Adjunct Faculty, Carnegie Mellon University

Meiklejohn

Identify the core challenges with modifying, testing, and
deploying applications safely.

Describe and differentiate the possible techniques for
ensuring reliable and safe delivery of software at scale.

Practice identifying problematic changes and how to go
about making changes safely.

Reliably Releasing Software

How Do You Change This Software?

.
MOdIfy @0 ® Autsave O (R =] (S Book1 Q search (Cmd + Ctrl + U) &
i =

(2 comments (= Share ~

o E Insert Draw Pagelayout Formulas Data Review View
Implement one or more changes in the o h s jn Ak =B % b e | - G- B | Zesv. O
Paste EEV B I U-w~]| ™ie Mo A v S == v $v% 9 <) Conditional Format Cell %:Delmv - Sort& Find& Add-ins Analyze
= == — = = = - = ormatting as Table Styles [ef] Format v &~ Fiter Select Data

application and build the new version of T £
the application. S ——

Q

Test
Test the application using a test suite or :

QA process to ensure application works
correctly.

25

30

Release
Create new version of the software, users

close their existing version and install it :
and open the new version. | BT T — —

Sheet1 +

Meiklejohn Reliably Releasing Software

App Upgrade: One Version To The Next

V1.0 V1.1

Similarly, if we want to scale up this application to more users, we just have
users install more copies of this application on their computer.

This detail will become important later. F

Meiklejohn Reliably Releasing Software

What About This Software?

Wikipedia

Meiklejohn

Monolithic

Microservice

)T -

v -

-]
IPEDIA -]
Today
Today Featured article

v dopeannce en Featured article
a

A James A. Doonan

James A. Doonan

Reliably Releasing Software

What Are The Differences?

3 e ;
e wsers oimout Fomuss Dux Rewew view O Gommn
4 bo B | ot Nerom o+ 12+ A == ¥+ | cewn - - G- B | It O)
Location §. e | =W p |0l T 5 2= O f B
e g | BT ur|BY|[&vAr [SSE|ES By %9 ¢ o e syes Efemay | Qv Ve s QM
#

Servers, not Devices

Application runs on server and is deployed to
cloud.

It's not installed on client’s device.

Scaling

“Scale out”

Scaling is achieved by increasing the server
capacity, instead of installing the software on more
clients.

Availability

“Always On”
Applications are upgrade in place, typically aiming
for zero-downtime.

Meiklejohn Reliably Releasing Software

Scaling and Deployments: Intertwined

Vertical Scaling Horizontal Scaling
Scaling = > _ _ _ _ _ _ _
Red/Black: switch F Red/Black or Blue/Green Rolling Upgrade
Blue/Green: incremental traffic

Deployment

Meiklejohn Reliably Releasing Software

Bugs?

Rollouts Are Slow
Applications may have thousands of server Rolling Upgrade
instances, rollouts can take multiple hours.

Bugs Might Take a While To Surface
Error rate might be low, might take a while
to detect, might be manually reported.

What are some possible solutions for
High Cost/Impact For Bugs mitigating this risk?

Every second of a bug may indicate possible
user error. (e.g., can’t request a ride)

Can’t Immediately Rollback

Not enough capacity to immediately rollback
(i.e., blue nodes) and deployment of old code
is as slow as the new code.

Meiklejohn Reliably Releasing Software

Dark Launch

Solution: Dark Launch

Rollout with Features Dark

Perform rollout of code at the “same”
existing version with all new features turned
“off” - no-op rollout.

Rolling Upgrade with Dark Feature

oo‘amnlio oolamnlio

Incremental Ramp of Flag

Incrementally enable feature to users based
on percentage and roll out to employee (or
other limited cohort first) for early detection
(i.e., dogfooding.)

e all e 1l
ol ol ol ol
I | =

NEW NEW

Incremental Feature Release

Rollback: First Response Remember to write tests with the
Ensure that code can be rolled back ERITE R = tﬂﬁi:‘;‘,d true prior to
immediately on the first indication of issue.

Meiklejohn Reliably Releasing Software

Dark Launch: Observability

How do you identify a rollout problem?

Hit Rate
Use metrics tracking new code execution

to track introduction of new feature.

Error Rates

Use metrics tracking error rates and
compare with week-over-week for
derivations.

Remember: some errors may be normal
depending on the metric.
Correlate them with the feature ramps.

Meiklejohn

Ramp Rate

Feature flag gradually
enabled for users

Error Rate for User Action

N

Bug last week

Reliably Releasing Software

Bug this week

N

|

Normal
error rate

Databases: Changing the Database

Modifications to Database + Application
Often, you will have to

- modify the database (e.g., new column)
- with the application (e.g., new code)

Yo

More than one server!

for new features. [o |
You are developing a a new feature to highlight certain ;I
pages on Wikipedia.

Application Code Before: Show of hands for those @
SELECT title, content FROM pages WHERE url = “.” who have used SQL before!

Application Code After:
SELECT title, content, starred FROM pages WHERE url = “.”

We need to modify the database to add a starred field.

Meiklejohn Reliably Releasing Software

Databases: What’s Hard About This?

We have one database schema, how do we change it? oL oi
(recall: we have to add a new field called starred)

ﬁ What type is the starred column?

No Rolling Upgrades
Can'’t synchronize rolling upgrade between app +
database, no rolling upgrade for DB, even
schema changes in distributed databases are
atomic across nodes.

|t}

What type of problems does a
. rolling upgrade of our app code
In short: changes are atomic. introduce if our DB change takes |C>|

effect immediately?

New version might be incompatible Old version might be incompatible
ith old DB . - ith DB ion.
with old Problems During Rolling Upgrade/Release WIth new DB version

(i.e., access starred before there.) What scenarios might this be?

O

N

;

\
.

|

Meiklejohn Reliably Releasing Software

Database Changes: Adding a New Field

1. Add new field to the database using a migration.
New field added to the schema, but nothing uses it.
Nothing (i.e., indexes, integrity constraints, etc.) can use this field and field must be nullable.

. . . . - ope . Code to write field may contain a
Dark launch new version of application with code to begin writing the new field bug (e.q. serialization.)

2. Dark Launch Application With Code To Write Field i
Gradually roll out feature that writes the new field.

Code to read field may contain a

Dark launch new version of application with code to begin reading the new fiel bug (e.g. logic error.

Gradually roll out feature that writes the new field. Must handle nulls!

3. Dark Launch Application With Code To Read Field i
d.

Only after you've rolled out features to 100% of all users and waited for bug reports:

4. Remove Migration Code
Deploy version of code without migration (i.e., feature flags.)
You can't dark launch this, otherwise you'll loop indefinitely.

Meiklejohn Reliably Releasing Software

Mobile Clients: Another Moving Piece

Modifications to DB + App + Client

Many times you will have to modify the database
with the application and the mobile client for
new features.

Release Coordination

Can'’t synchronize updates: mobile application
modifications must be done ahead of time and
submitted to the App Store/Google Play.

{0 J

Data Interchange

Backwards compatible message formats must
be used and code must be able to handle feature Ej
being absent/present.

(think: removing a field in JSON)

Meiklejohn Reliably Releasing Software

What About This Software?

Wikipedia

Meiklejohn

Monolithic

Microservice

)T -

v -

-]
IPEDIA -]
Today
Today Featured article

v dopeannce en Featured article
a

A James A. Doonan

James A. Doonan

Reliably Releasing Software

Microservice Applications

Microservice architecture is an architectural style where applications are constructed from
services that communicate over the network using RPC and are developed, scaled and deployed independently.

NETFLIX UBER ™ DOORDASH

1,000 services 2,200 services 500 services
(2021) >120 for getting ride >100 involved in core flow
(2016) (2024)

Microservice applications are the most common and complex type of distributed application being built today.

DoorDash (2024) operates 500 microservices.

Twitter (2017) operates a > 10k node distributed Hadoop cluster.
However, most nodes have the same behavior, running the exact same code.
3 Each service provides different functionality, has a different API, and is deployed continuously.

Meiklejohn

Reliably Releasing Software

Microservices: Socio-Technical Problem

Microservice architectures solve a socio-technical problem:

Technical solution to support rapid feature development at scale as an organization grows,
that breaks down the application into components where no single engineer needs
“= knowledge of the entire application to develop and deploy features.

We would not develop an application this way unless it was absolutely necessary.

Technical solution splits code across multiple repositories (and languages) making E
it harder to develop, test, analyze, and reason about the application.
(e.g., IDE support, static and dynamic analysis tools, integration and functional testing, etc.) -\J’—’

Meiklejohn Reliably Releasing Software

Netflix: Microservice Architecture

API Gateway
Service and Team

Meiklejohn et al.

9:36{1_1_‘ -L‘lj-xé‘-

Scandalous * Drama * Fraud

+ ®

My List

|
A
30 4Breaking"

‘oowd:aic TINDER ¢ Bad

Continue Watching for Christopher

Witty Sitcoms

32k

Filibuster

My List
Service and Team

‘
' —-l

Bookmarks
Service and Team

_“—

User Recommendations
Service and Team

‘
C——
—

Revisiting: Wikipedia

A ® \ ©
g And some mobile
; | clients might lag
' several versions
behind.
Where there are
= different versions at / =
More interaction iy each point. 7
points between l V4 l
— — components. =] =L =1 =L =1 =1

0

(-

0
(-
(_04—
-

0 0 C

Meiklejohn Reliably Releasing Software

...Just One More Thing

Servers can also fail!

API Gateway
Service and Team

Meiklejohn

A 4

9:36{1_1_‘ -L‘lj-xé‘-

Scandalous * Drama * Fraud

+ ®

My List

| ")
i A
30 4Breaking" %
oweaL TINDER ¢ Bad
Continue Watching for Christopher

Witty Sitcoms
30
ROCK
L
Schitt$Creek

A

A

Reliably Releasing Software

My List
Service and Team

Bookmarks
Service and Team

_“—

User Recommendations
Service and Team

Partial Failure

Featured article $ Today

Featured article

LT _ N _n
l = = = = =

(0—
(0
([«

Meiklejohn Reliably Releasing Software

Partial Failure in Microservices: Different

...but, microservices are also susceptible to partial failure:

1. Failed node causing connection errors.
Prior to removal by health check, application must still tolerate and respond to errors.

2. Bad deployments.
Number of nodes return error responses (e.g., 500 Internal Server Error) before removal.

3. Service failures only with certain arguments.
Service returns errors when provided with certain arguments by a caller only. (e.g., NPE, etc.)

4, Dependencies of a given RPC method may be malfunctioning.
Direct dependencies of a service may slow down, timeout, or fail in other ways.

Meiklejohn Reliably Releasing Software

Microservice Application: Audible

One solution to partial failure:

Audible
Mobile App

1. Build the microservice application as if

it's a monolithic application

2. Fail the entire request

if any dependency returns a failure

These are called hard dependencies.

Alternatively,
should we embrace failure?

Meiklejohn

CRE: Amazon Amazon
DEell\{ery ElasticCache Ownership RDS
ngine
Content Audible "
Delivery =% Download Activation = rE:E\)zson
Service Service p
Amazon Amazon
s3 s3 Stats =~ —> Dér:gfnZgBB
(Metadata) (Assets)
Audible
Audiobook streaming service
Stateless Stateful D Client

Reliably Releasing Software

Internal RPC —>

External RPC ——>

Microservice Application: Netflix

9:36@ NLN l—.& - My List

. ° ° o Scandalous * Drama * Fraud Service and Team
Embracing partial failure: + o
We do not want to fail when the bookmarks My List <
service is unreachable or producing errors. N ‘
| eSS
i 2) Breaking®
bowlrare TINDER | Bad

|
Bookmarks

CTtinue Watching for Christopher
Service and Team

API Gateway
Service and Team

A

Witty Sitcoms
30 . | CommuniFy .
ROC - Y User Recommendations

y

SchittsCirek” MV Service and Team

A 4

Meiklejohn Reliably Releasing Software

What should happen?

Trending -
N 1N
9:364_LL a T ==
Scandalous * Drama * Fraud
My_}_Lisl » Elay Info

My List Fa"baCkS:

Telemetry & | ‘ 1) .
— =) Breakmgj Developers specify alternative
User = sowlfesi TINDER | B4 I application logic in the event of
Profiles Bookmarks Ratings T,end.n; — dependency failure.

o
L

> Ei yj” | These are called
Fe. A | A soft dependencies.

AKay Triloqy‘ AN

Witty Sitcoms

S%CK - \ WMMUNWI
R >N} _.,
* %’v, Nlml 4 pe ' [T

API
Gateway

What actually happens? -

&

We need to test it.

Meiklejohn Reliably Releasing Software

Example: Purchase Application

Pizza Delivery Example
DB DB DB DB
I I 1 I Fictional example,
but, inspired by
Pricing . .
User Service Cart Service Adjustment = industrial example
Service
API RPC . RPC _ RPC Err Err
Gateway getUser o getCart - getAd;
T Eligible customer receives discount
- Fa Eligible customer receives discount email
en All customers receive pizza
., ~1
Err B
Err updateCrt End
N
Order Service T

Meiklejohn Reliably Releasing Software

Purchase: Hard Dependencies

Any hard dependency failure will cause
the application to return an error. DB

API
Gateway

Client

\/_

DB DB

Cannot checkout without cart.

Adjustment lookup failure, do not
checkout.

o~

Service ~——

Hard dependency:

Order Service

Applying adjustment failure, do not
complete order.

\

/¥

Failure to send email on discount, do
not complete order.

Adj?

IVICIKIC] O

Cannot checkout without user info.

End

Reliably Releasing Software

Active Learning: Dependency Types

33) “)]
. Not great.

“Failure of any dependency forces application to fail the checkout process.”

Discuss with you neighbor(s) and answer the following:

1. What might we want to change about the way this application handles failure?
(i.e., the business logic, not the application behavior)

2. How will we make sure they are “good” changes?
(i.e., the business logic doesn’t negatively affect the business.)

3.

You guessed it, I'm looking for metrics. What are they?
(you knew this question was coming.)

Meiklejohn Reliably Releasing Software

Results of Testing the Application

59« "
. Not great.

Business logic decisions conditional on failure
that cannot be automatically determined.

Identified Problems: ~_ —
1. Not being able to send the discount email shouldn’t cancel the order with an error.

“Failure of any dependency forces application to i‘

;1 ToFix: Allow the order to be processed regardless of email failure.

2. Customers not eligible for a discount cannot checkout if pricing adjustment call fails.
(where, it would have returned $0, anyway.)

iﬁ . o L] o [
;1 To Fix: Assume a pricing adjustment of $0 when the call fails.

/¥
Corollary: Cannot reason about the RPC in isolation without

understanding the broader context.

3. Update Cart (on adjustment > $0) should continu

;5 Ensure: Ask user who is eligible for an adjustment to try again where the call (may) succeed

as user may only be making purchase based on available discount (i.e., first time discount.)

Meiklejohn Reliably Releasing Software

Purchase: Ignhored Soft Dependency Failures

DB
User Service
API RPC
Gateway getUser
Client Fail
Err

Order Service

Meiklejohn

DB

Cart Service

RPC
getCart

Fail

Err

DB DB
. Ilgnore failure of email.
Pricing
Adjustment (e.g., swallow error)
Service \/—
RPC T
getAdj Soft dependency:
RPC
.. . . emailDisc
Eligible customer receives discount
& Eligible customer receives discount email
All customers receive pizza |
RPC
Adj? updateCrt Fail End

Reliably Releasing Software

Purchase: Soft Dependencies with Fallbacks

API
Gateway

Eligible customers asked to try checkout again.

Unknown status customers assumed $0 discount.
Discount email failure does not prevent checkout.
Pricin All customers receive (ideally) receive pizza at correct price.

DB DB DB —
User Service Cart Service Adjustm
Service
RPC o
i Soft dependency: r
Request doesn't fail if pricing adjustment is unavailable,
but proceeds assuming $0 adjustment. (e.g., fallback) ., 0
\ 4

] . . RPC

Update cart is remains Adj? updateCrt

Order Service

Meiklejohn

hard dependency on adjustment > $0.

Reliably Releasing Software

* »>
. | *
Err + gnore %
03

RPC
emailDisc

Err

Fail End

Where to Start: Simple Mocking

9:3GP_L NN l—.x—v - My List
Mocking failure: .\ Scandalous * Drama * Fraud Service

L a
Simple mocks for network calls My List __
can simulate failure as well as success. @)‘ W
~

4Breaking
API Gateway
Service

SWINDLER

owdrait TINDER ¢ Bad

Continue Watching for Christopher Bookmarks
Service

—m Replace with mock
that returns error.

User Recommendations
Service

‘
||

A 4

A Witty Sitcoms
Test my API gateway 32 o
service by sending it a
request to load page.
T ——

Test asserts that
behavior is correct
when failure present.

Meiklejohn Reliably Releasing Software

What About This Software?

-
7 -
IPEDIA -]
Sowen
— Today
Featured article
Rese oo v Appearance noe » Today
= v Mevees, (1S Featured article
o/ aboct e ycoped For Wipodie borme pase, 300 ar - a
o prmary Enghungage Wipeda, so0 Engis Wikpod. For iher ses, 300 @ suvcws

i James A. Doonan
WikipEpIA

<o Ry James A. Doonan

ysius Doonan was an American
fest and Jesut, who was the

James Aloysius Doonan was an American
@ Catholic priest and Jesut, who was the
Pt — prosident of Georgetown University from 1882

101888 During that tme he oversaw the.
—
—
—

i

Meiklejohn

Reliably Releasing Software

Key Takeaways

1. Controlled rollouts with feature flags and robust observability are critical risk minimization.

2. Backwards compatibility is essential for safe rollouts, especially in microservice architectures.
3. Always ensure the ability to rollback and have a clear rollout/rollback plan.

4, Testing must cover both legacy and new behaviors, including with feature flags on and off.

When dealing with soft dependencies in a microservice application:
1. Test application flows E2E thoroughly for the desired outcomes without failure present.

2. Use mocks or fakes to simulate failure to understand if your application continues to do the
correct thing under failure with the same set of test cases.

Meiklejohn Reliably Releasing Software

In Conclusion

Identified the core challenges in making changes to software
safely and reliably in a cloud application.

Examined several authorship, testing, and rollout strategies
to release code safely.

Practiced identifying problematic changes and how to go
é about making changes safely.
Any Questions? r @

Meiklejohn Reliably Releasing Software

	Introduction
	Slide 1
	Slide 2: Goals

	Problem Statement
	Slide 3: How Do You Change This Software?
	Slide 4: App Upgrade: One Version To The Next
	Slide 5: What About This Software?

	Monolithic
	Slide 6: What Are The Differences?
	Slide 7: Scaling and Deployments: Intertwined
	Slide 8: Bugs?
	Slide 9: Dark Launch
	Slide 10: Dark Launch: Observability

	Monolithic with Database
	Slide 11: Databases: Changing the Database
	Slide 12: Databases: What’s Hard About This?
	Slide 13: Database Changes: Adding a New Field

	Monolithic with Mobile Client
	Slide 14: Mobile Clients: Another Moving Piece

	Microservices
	Slide 15: What About This Software?
	Slide 16: Microservice Applications
	Slide 17: Microservices: Socio-Technical Problem
	Slide 18: Netflix: Microservice Architecture
	Slide 19: Revisiting: Wikipedia

	Microservices: Failure
	Slide 20: …Just One More Thing
	Slide 21: Partial Failure
	Slide 22: Partial Failure in Microservices: Different
	Slide 23: Microservice Application: Audible
	Slide 24: Microservice Application: Netflix
	Slide 25: What should happen?

	Purchase Application
	Slide 26: Example: Purchase Application
	Slide 27: Purchase: Hard Dependencies
	Slide 28: Active Learning: Dependency Types
	Slide 29: Results of Testing the Application
	Slide 30: Purchase: Ignored Soft Dependency Failures
	Slide 31: Purchase: Soft Dependencies with Fallbacks
	Slide 32: Where to Start: Simple Mocking
	Slide 33: What About This Software?
	Slide 34: Key Takeaways

	In Conclusion
	Slide 35: In Conclusion

