
Reliably Releasing Software

Christopher S. Meiklejohn

Software Engineer, DoorDash

Adjunct Faculty, Carnegie Mellon University

Foundations of Software Engineering

Meiklejohn Reliably Releasing Software 2

Goals

Identify the core challenges with modifying, testing, and
deploying applications safely.

Describe and differentiate the possible techniques for
ensuring reliable and safe delivery of software at scale.

Practice identifying problematic changes and how to go
about making changes safely.

Meiklejohn Reliably Releasing Software 3

How Do You Change This Software?

Modify
Implement one or more changes in the
application and build the new version of
the application.

Test
Test the application using a test suite or
QA process to ensure application works
correctly.

Release
Create new version of the software, users
close their existing version and install it
and open the new version.

Meiklejohn Reliably Releasing Software 4

App Upgrade: One Version To The Next

V1.0 V1.1

Similarly, if we want to scale up this application to more users, we just have
users install more copies of this application on their computer.

This detail will become important later.

Meiklejohn Reliably Releasing Software 5

What About This Software?

Monolithic

Microservice

Meiklejohn Reliably Releasing Software 6

What Are The Differences?

Servers, not Devices
Application runs on server and is deployed to
cloud.
It’s not installed on client’s device.

“Scale out”
Scaling is achieved by increasing the server
capacity, instead of installing the software on more
clients.

“Always On”
Applications are upgrade in place, typically aiming
for zero-downtime.

Availability

Scaling

Location

Meiklejohn Reliably Releasing Software 7

Scaling and Deployments: Intertwined
Vertical Scaling Horizontal Scaling

Rolling UpgradeRed/Black or Blue/Green

Scaling

Deployment
V1.0 V1.1

Red/Black: switch
Blue/Green: incremental traffic

Meiklejohn Reliably Releasing Software 8

Bugs?

Rollouts Are Slow
Applications may have thousands of server
instances, rollouts can take multiple hours.

Bugs Might Take a While To Surface
Error rate might be low, might take a while
to detect, might be manually reported.

High Cost/Impact For Bugs
Every second of a bug may indicate possible
user error. (e.g., can’t request a ride)

Can’t Immediately Rollback
Not enough capacity to immediately rollback
(i.e., blue nodes) and deployment of old code
is as slow as the new code.

Rolling Upgrade

What are some possible solutions for
mitigating this risk?

Meiklejohn Reliably Releasing Software 9

Dark Launch

Solution: Dark Launch

Rollout with Features Dark
Perform rollout of code at the “same”
existing version with all new features turned
“off” – no-op rollout.

Incremental Ramp of Flag
Incrementally enable feature to users based
on percentage and roll out to employee (or
other limited cohort first) for early detection
(i.e., dogfooding.)

Rollback: First Response
Ensure that code can be rolled back
immediately on the first indication of issue.

Rolling Upgrade with Dark Feature

Incremental Feature Release

Remember to write tests with the
feature flag = false and true prior to

rollout!

Meiklejohn Reliably Releasing Software 10

Dark Launch: Observability

Error Rate for User Action

Bug last week

Bug this week

Normal
error rate

Error Rates
Use metrics tracking error rates and
compare with week-over-week for
derivations.

Ramp Rate

Feature flag gradually
enabled for users

How do you identify a rollout problem?

Hit Rate
Use metrics tracking new code execution
to track introduction of new feature.

Remember: some errors may be normal
depending on the metric.
Correlate them with the feature ramps.

Meiklejohn Reliably Releasing Software 11

Databases: Changing the Database

Modifications to Database + Application
Often, you will have to
- modify the database (e.g., new column)
- with the application (e.g., new code)
for new features.

You are developing a a new feature to highlight certain
pages on Wikipedia.

SELECT title, content FROM pages WHERE url = “…”
Show of hands for those

who have used SQL before!

More than one server!

Application Code Before:

SELECT title, content, starred FROM pages WHERE url = “…”

Application Code After:

We need to modify the database to add a starred field.

Meiklejohn Reliably Releasing Software 12

Databases: What’s Hard About This?

No Rolling Upgrades
Can’t synchronize rolling upgrade between app +
database, no rolling upgrade for DB, even
schema changes in distributed databases are
atomic across nodes.

In short: changes are atomic.

Problems During Rolling Upgrade/Release
New version might be incompatible

with old DB
(i.e., access starred before there.)

Old version might be incompatible
with new DB version.

What scenarios might this be?

We have one database schema, how do we change it?
(recall: we have to add a new field called starred) What type is the starred column?

What type of problems does a
rolling upgrade of our app code

introduce if our DB change takes
effect immediately?

Meiklejohn Reliably Releasing Software 13

Database Changes: Adding a New Field

Add new field to the database using a migration.
New field added to the schema, but nothing uses it.
Nothing (i.e., indexes, integrity constraints, etc.) can use this field and field must be nullable.

1.

Dark Launch Application With Code To Write Field
Dark launch new version of application with code to begin writing the new field.
Gradually roll out feature that writes the new field.

2.
Code to write field may contain a

bug (e.g., serialization.)

Dark Launch Application With Code To Read Field
Dark launch new version of application with code to begin reading the new field.
Gradually roll out feature that writes the new field. Must handle nulls!

3.

Remove Migration Code
Deploy version of code without migration (i.e., feature flags.)
You can’t dark launch this, otherwise you’ll loop indefinitely.

4.

Code to read field may contain a
bug (e.g., logic error.)

Only after you’ve rolled out features to 100% of all users and waited for bug reports:

Meiklejohn Reliably Releasing Software 14

Mobile Clients: Another Moving Piece

Modifications to DB + App + Client
Many times you will have to modify the database
with the application and the mobile client for
new features.

Release Coordination
Can’t synchronize updates: mobile application
modifications must be done ahead of time and
submitted to the App Store/Google Play.

Data Interchange
Backwards compatible message formats must
be used and code must be able to handle feature
being absent/present.
(think: removing a field in JSON)

Meiklejohn Reliably Releasing Software 15

What About This Software?

Monolithic

Microservice

Meiklejohn Reliably Releasing Software 16

Microservice Applications

Microservice architecture is an architectural style where applications are constructed from
services that communicate over the network using RPC and are developed, scaled and deployed independently.

1,000 services
(2021)

2,200 services
>120 for getting ride

(2016)

500 services
>100 involved in core flow

(2024)

Microservice applications are the most common and complex type of distributed application being built today.

Twitter (2017) operates a > 10k node distributed Hadoop cluster.
However, most nodes have the same behavior, running the exact same code.

DoorDash (2024) operates 500 microservices.
Each service provides different functionality, has a different API, and is deployed continuously.

Meiklejohn Reliably Releasing Software 17

Microservices: Socio-Technical Problem

Microservice architectures solve a socio-technical problem:

Technical solution to support rapid feature development at scale as an organization grows,
that breaks down the application into components where no single engineer needs
knowledge of the entire application to develop and deploy features.

We would not develop an application this way unless it was absolutely necessary.

Technical solution splits code across multiple repositories (and languages) making
it harder to develop, test, analyze, and reason about the application.
(e.g., IDE support, static and dynamic analysis tools, integration and functional testing, etc.)

Meiklejohn et al. Filibuster 18

Netflix: Microservice Architecture
My List

Service and Team

Bookmarks
Service and Team

User Recommendations
Service and Team

API Gateway
Service and Team

Meiklejohn Reliably Releasing Software 19

Revisiting: Wikipedia

More interaction
points between

components.

Where there are
different versions at

each point.

And some mobile
clients might lag
several versions

behind.

Meiklejohn Reliably Releasing Software 20

…Just One More Thing
My List

Service and Team

Bookmarks
Service and Team

User Recommendations
Service and Team

API Gateway
Service and Team

Servers can also fail!

Meiklejohn Reliably Releasing Software 21

Partial Failure

Meiklejohn Reliably Releasing Software 22

Partial Failure in Microservices: Different

Failed node causing connection errors.
Prior to removal by health check, application must still tolerate and respond to errors.

1.

…but, microservices are also susceptible to partial failure:

Bad deployments.
Number of nodes return error responses (e.g., 500 Internal Server Error) before removal.

2.

Service failures only with certain arguments.
Service returns errors when provided with certain arguments by a caller only. (e.g., NPE, etc.)

3.

Dependencies of a given RPC method may be malfunctioning.
Direct dependencies of a service may slow down, timeout, or fail in other ways.

4.

Meiklejohn Reliably Releasing Software 23

Microservice Application: Audible

Audible
Audiobook streaming service

Content
Delivery
Engine

Content
Delivery
Service

Activation

Ownership

Stats

Amazon
ElasticCache

Amazon
RDS

Amazon
RDS

Amazon
DynamoDB

Amazon
S3

(Assets)

Amazon
S3

(Metadata)

Audible
Mobile App

Audible
Download

Service

StatefulStateless

Internal RPC

Client

External RPC

Build the microservice application as if
it’s a monolithic application

One solution to partial failure:

1.

Fail the entire request
if any dependency returns a failure

2.

Alternatively,
should we embrace failure?

These are called hard dependencies.

Meiklejohn Reliably Releasing Software 24

Microservice Application: Netflix
My List

Service and Team

Bookmarks
Service and Team

User Recommendations
Service and Team

API Gateway
Service and Team

We do not want to fail when the bookmarks
service is unreachable or producing errors.

Embracing partial failure:

Meiklejohn Reliably Releasing Software 25

What should happen?

Client

API
Gateway

My List Ratings

User
Recs

Global
Recs

Bookmarks

Telemetry

Trending

User
Profiles

Developers specify alternative
application logic in the event of
dependency failure.

What actually happens?

These are called
soft dependencies.

Fallbacks:

We need to test it.

Example: Purchase Application

Meiklejohn Reliably Releasing Software 26

User Service Cart Service
Pricing

Adjustment
Service

…

Client

API
Gateway

DB DB DB DB

Fail Fail Fail

Fail

Err

Err

Err Err

RPC
getUser

RPC
getCart

Adj?
RPC

updateCrt

RPC
getAdj

End

Order Service

Fictional example,
but, inspired by

industrial example

RPC
emailDisc

FailErr

Pizza Delivery Example

 Eligible customer receives discount
 Eligible customer receives discount email
 All customers receive pizza

Purchase: Hard Dependencies

Meiklejohn Reliably Releasing Software 27

User Service Cart Service
Pricing

Adjustment
Service

…

Client

API
Gateway

DB DB DB DB

Fail Fail Fail

Fail

Err

Err

Err Err

RPC
getUser

RPC
getCart

Adj?
RPC

updateCrt

RPC
getAdj

End

Order Service

RPC
emailDisc

FailErr

Hard dependency:

Any hard dependency failure will cause
the application to return an error.

Cannot checkout without user info.

Cannot checkout without cart.

Applying adjustment failure, do not
complete order.

Adjustment lookup failure, do not
checkout.

Failure to send email on discount, do
not complete order.

Meiklejohn Reliably Releasing Software 28

Active Learning: Dependency Types

Discuss with you neighbor(s) and answer the following:

What might we want to change about the way this application handles failure?
(i.e., the business logic, not the application behavior)

1.

“Failure of any dependency forces application to fail the checkout process.”

“Not great.”

How will we make sure they are “good” changes?
(i.e., the business logic doesn’t negatively affect the business.)

2.

You guessed it, I’m looking for metrics. What are they?
(you knew this question was coming.)

3.

Results of Testing the Application

Meiklejohn Reliably Releasing Software 29

“Failure of any dependency forces application to fail the checkout process.”

“Not great.”

Not being able to send the discount email shouldn’t cancel the order with an error.1.

Identified Problems:

Customers not eligible for a discount cannot checkout if pricing adjustment call fails.
(where, it would have returned $0, anyway.)

2.

To Fix: Allow the order to be processed regardless of email failure.

To Fix: Assume a pricing adjustment of $0 when the call fails.

Update Cart (on adjustment > $0) should continue to fail the checkout.3.

Ensure: Ask user who is eligible for an adjustment to try again where the call (may) succeed
as user may only be making purchase based on available discount (i.e., first time discount.)

Corollary:

Business logic decisions conditional on failure
that cannot be automatically determined.

Cannot reason about the RPC in isolation without
understanding the broader context.

Purchase: Ignored Soft Dependency Failures

Meiklejohn Reliably Releasing Software 30

User Service Cart Service
Pricing

Adjustment
Service

…

Client

API
Gateway

DB DB DB DB

Fail Fail Fail

Fail

Err

Err

Err Err

RPC
getUser

RPC
getCart

Adj?
RPC

updateCrt

RPC
getAdj

End

Order Service

RPC
emailDisc

FailErr

Ignore failure of email.
(e.g., swallow error)

End

RPC
emailDisc

Ignore
Fail

Soft dependency:

 Eligible customer receives discount
 Eligible customer receives discount email
 All customers receive pizza

Purchase: Soft Dependencies with Fallbacks

Meiklejohn Reliably Releasing Software 31

User Service Cart Service
Pricing

Adjustment
Service

…

Client

API
Gateway

DB DB DB DB

Fail Fail Fail

Fail

Err

Err

Err Err

RPC
getUser

RPC
getCart

Adj?
RPC

updateCrt

RPC
getAdj

End

Order Service

RPC
emailDisc

FailErr

End

RPC
emailDisc

Ignore
FailSoft dependency:

$0
Request doesn’t fail if pricing adjustment is unavailable,

but proceeds assuming $0 adjustment. (e.g., fallback)

Update cart is remains
hard dependency on adjustment > $0.

 Eligible customers asked to try checkout again.
 Unknown status customers assumed $0 discount.
 Discount email failure does not prevent checkout.
 All customers receive (ideally) receive pizza at correct price.

Meiklejohn Reliably Releasing Software 32

Where to Start: Simple Mocking

My List
Service

Bookmarks
Service

User Recommendations
Service

API Gateway
Service

Simple mocks for network calls
can simulate failure as well as success.

Mocking failure:

Test my API gateway
service by sending it a
request to load page.

Replace with mock
that returns error.

Test asserts that
behavior is correct
when failure present.

Meiklejohn Reliably Releasing Software 33

What About This Software?

Meiklejohn Reliably Releasing Software 34

Key Takeaways

Controlled rollouts with feature flags and robust observability are critical risk minimization.1.

Backwards compatibility is essential for safe rollouts, especially in microservice architectures.2.

Always ensure the ability to rollback and have a clear rollout/rollback plan.3.

Testing must cover both legacy and new behaviors, including with feature flags on and off.4.

When dealing with soft dependencies in a microservice application:

Test application flows E2E thoroughly for the desired outcomes without failure present.1.

Use mocks or fakes to simulate failure to understand if your application continues to do the
correct thing under failure with the same set of test cases.

2.

Meiklejohn Reliably Releasing Software 35

In Conclusion

Identified the core challenges in making changes to software
safely and reliably in a cloud application.

Examined several authorship, testing, and rollout strategies
to release code safely.

Practiced identifying problematic changes and how to go
about making changes safely.

Any Questions?

	Introduction
	Slide 1
	Slide 2: Goals

	Problem Statement
	Slide 3: How Do You Change This Software?
	Slide 4: App Upgrade: One Version To The Next
	Slide 5: What About This Software?

	Monolithic
	Slide 6: What Are The Differences?
	Slide 7: Scaling and Deployments: Intertwined
	Slide 8: Bugs?
	Slide 9: Dark Launch
	Slide 10: Dark Launch: Observability

	Monolithic with Database
	Slide 11: Databases: Changing the Database
	Slide 12: Databases: What’s Hard About This?
	Slide 13: Database Changes: Adding a New Field

	Monolithic with Mobile Client
	Slide 14: Mobile Clients: Another Moving Piece

	Microservices
	Slide 15: What About This Software?
	Slide 16: Microservice Applications
	Slide 17: Microservices: Socio-Technical Problem
	Slide 18: Netflix: Microservice Architecture
	Slide 19: Revisiting: Wikipedia

	Microservices: Failure
	Slide 20: …Just One More Thing
	Slide 21: Partial Failure
	Slide 22: Partial Failure in Microservices: Different
	Slide 23: Microservice Application: Audible
	Slide 24: Microservice Application: Netflix
	Slide 25: What should happen?

	Purchase Application
	Slide 26: Example: Purchase Application
	Slide 27: Purchase: Hard Dependencies
	Slide 28: Active Learning: Dependency Types
	Slide 29: Results of Testing the Application
	Slide 30: Purchase: Ignored Soft Dependency Failures
	Slide 31: Purchase: Soft Dependencies with Fallbacks
	Slide 32: Where to Start: Simple Mocking
	Slide 33: What About This Software?
	Slide 34: Key Takeaways

	In Conclusion
	Slide 35: In Conclusion

