
Reliably Releasing Software

Christopher S. Meiklejohn

Software Engineer, DoorDash

Adjunct Faculty, Carnegie Mellon University

Foundations of Software Engineering

Meiklejohn Reliably Releasing Software 2

Let’s Revisit

Identify the core challenges with modifying, testing, and
deploying applications safely.

Describe and differentiate the possible techniques for
ensuring reliable and safe delivery of software at scale.

Practice authoring a safe rollout plan for a new feature.

Meiklejohn Reliably Releasing Software 3

What About This Software?

Monolithic

Microservice

Meiklejohn Reliably Releasing Software 4

Scaling and Deployments: Intertwined
Vertical Scaling Horizontal Scaling

Rolling UpgradeRed/Black or Blue/Green

Scaling

Deployment
V1.0 V1.1

Red/Black: switch
Blue/Green: incremental traffic

Meiklejohn Reliably Releasing Software 5

Dark Launch

Solution: Dark Launch

Rollout with Features Dark
Perform rollout of code at the “same”
existing version with all new features turned
“off” – no-op rollout.

Incremental Ramp of Flag
Incrementally enable feature to users based
on percentage and roll out to employee (or
other limited cohort first) for early detection
(i.e., dogfooding.)

Rollback: First Response
Ensure that code can be rolled back
immediately on the first indication of issue.

Rolling Upgrade with Dark Feature

Incremental Feature Release

Remember to write tests with the
feature flag = false and true prior to

rollout!

Meiklejohn Reliably Releasing Software 6

Dark Launch: Observability

Error Rate for User Action

Bug last week

Bug this week

Normal
error rate

Error Rates
Use metrics tracking error rates and
compare with week-over-week for
derivations.

Ramp Rate

Feature flag gradually
enabled for users

How do you identify a rollout problem?

Hit Rate
Use metrics tracking new code execution
to track introduction of new feature.

Remember: some errors may be normal
depending on the metric.
Correlate them with the feature ramps.

Meiklejohn Reliably Releasing Software 7

What Are The Differences?

Servers, not Devices
Application runs on server and is deployed to
cloud.
It’s not installed on client’s device.

“Scale out”
Scaling is achieved by increasing the server
capacity, instead of installing the software on more
clients.

“Always On”
Applications are upgrade in place, typically aiming
for zero-downtime.

Availability

Scaling

Location

Meiklejohn Reliably Releasing Software 8

Bugs?

Rollouts Are Slow
Applications may have thousands of server
instances, rollouts can take multiple hours.

Bugs Might Take a While To Surface
Error rate might be low, might take a while
to detect, might be manually reported.

High Cost/Impact For Bugs
Every second of a bug may indicate possible
user error. (e.g., can’t request a ride)

Can’t Immediately Rollback
Not enough capacity to immediately rollback
(i.e., blue nodes) and deployment of old code
is as slow as the new code.

Rolling Upgrade

What are some possible solutions for
mitigating this risk?

Meiklejohn Reliably Releasing Software 9

Active Learning: Metrics

Partner up with you neighbor and answer the following:

Define a metric that let’s you track the feature rollout.1.

You are developing a ride sharing application and you’re launching a feature to allow users to
request priority rides.

Rate of users who are eligible to see the priority option and then see the priority option.

Define a metric that let’s you track successful usage of the feature.2.

Rate of users who see the priority option and receive a priority ride.

Define metric(s) that let’s you track error rate of the option.3.

Rate of users who see priority option, select it, but do not receive a priority ride when available.

Rate of users who should see priority option, but do not see the priority option.

Meiklejohn Reliably Releasing Software 10

Databases: What’s Hard About This?

No Rolling Upgrades
Can’t synchronize rolling upgrade between app +
database, no rolling upgrade for DB, even
schema changes in distributed databases are
atomic across nodes.

In short: changes are atomic.

Problems During Rolling Upgrade/Release
New version might be incompatible

with old DB
(i.e., access starred before there.)

Old version might be incompatible
with new DB version.

What scenarios might this be?

We have one database schema, how do we change it?
(recall: we have to add a new field called starred) What type is the starred column?

What type of problems does a
rolling upgrade of our app code

introduce if our DB change takes
effect immediately?

Meiklejohn Reliably Releasing Software 11

What About This?

Modifications to DB + App + Client
Many times you will have to modify the database
with the application and the mobile client for
new features.

Release Coordination
Can’t synchronize updates: mobile application
modifications must be done ahead of time and
submitted to the App Store/Google Play.

Data Interchange
Backwards compatible message formats must
be used and code must be able to handle feature
being absent/present.

Meiklejohn Reliably Releasing Software 12

RPCs and Message Formats

Same problem as the database, just with message formats and APIs, instead of the schema:

Data interchange must be backwards compatible format1.

Two new problem(s): version longevity and forced upgrades:

One you make an API and it’s used, you own it for life as users may choose not to upgrade.1.

JSON, depending on the serializer and data mapping layer.

Google’s GRPC is natively backwards compatible when adding new fields.

APIs must be rolled out prior to mobile app that consumes them.2.

Backwards compatibility may have to be across several versions.2.

Meiklejohn Reliably Releasing Software 13

Key Takeaways: Backwards Compatibility

You’re (almost always) developing a distributed system even with a monolithic architecture.
(i.e., most monolithic applications use a database and have an associated mobile application.)

Therefore, the key to safely rolling out changes is backwards compatibility.

Backwards compatible database changes.1.

Backwards compatible message and data formats for data interchange. 2.

We haven’t even talked about microservices yet!

Meiklejohn Reliably Releasing Software 14

Key Takeaways: Rollouts and Rollbacks

Backwards compatibility with controlled rollouts where rollback is always possible.

Release features dark, using feature flags or other mechanisms.1.

Controlled rollouts over time to mitigate risk by gradually introducing changes.2.

At every step, ensure you have the ability to rollback.3.

Have a rollout plan and runbook for every step.4.

Meiklejohn Reliably Releasing Software 15

Key Takeaways: Backwards Compatability

How do you ensure that code is backwards compatible:

Test existing features with feature flag = off, to ensure no regressions and no-op/dark rollout.1.

Test existing features with feature flag = on, to ensure no regressions in existing behavior.2.

Test new features with feature flag = on, to exercise dark launched code.3.

Cleanup tests after rollout.5.

Testing should include legacy data formats.4.

Be a good citizen!

Meiklejohn Reliably Releasing Software 16

Key Takeaways: Deprecation

When you must make a backwards incompatible change:

Use tiered deprecation where possible.1.

At minimum 3 rollout events: add v1/v2 compatibility and enable v2, disable v1, cleanup.2.

Some APIs have to be supported “for life”, if they are exposed to clients and end users.3. Not only clients,
but also APIs.

Meiklejohn Reliably Releasing Software 17

Recall: Rollout Plan

What should be included in a great rollout plan:

Steps to take in rolling out your change in sequence.1.

Metrics to monitor at every single step along the way.2.

Positive (e.g., feature hit, feature candidate for success, feature success)a.

Negative (e.g., feature selected, didn’t get, feature not present as option)b.

Rollback strategy at every in the plan.3.

Backwards compatible changes for new features, launched dark.a.

Tiered deprecation, 3-rollout strategy for breaking changes only if necessary.b.

Need to be able to revert every step if something goes wrong.a.

Testing.0.

Meiklejohn Resilient Microservice Applications by Design and Without The Chaos 18

Microservice Applications

Microservice architecture is an architectural style where applications are constructed from
services that communicate over the network using RPC and are developed, scaled and deployed independently.

1,000 services
(2021)

2,200 services
>120 for getting ride

(2016)

500 services
>100 involved in core flow

(2024)

Microservice applications are the most common and complex type of distributed application being built today.

Twitter (2017) operates a > 10k node distributed Hadoop cluster.
However, most nodes have the same behavior, running the exact same code.

DoorDash (2024) operates 500 microservices.
Each service provides different functionality, has a different API, and is deployed continuously.

Meiklejohn Resilient Microservice Applications by Design and Without The Chaos 19

Microservices: Socio-Technical Problem

Microservice architectures solve a socio-technical problem:

Technical solution to support rapid feature development at scale as an organization grows,
that breaks down the application into components where no single engineer needs
knowledge of the entire application to develop and deploy features.

We would not develop an application this way unless it was absolutely necessary.

Technical solution splits code across multiple repositories (and languages) making
it harder to develop, test, analyze, and reason about the application.
(e.g., IDE support, static and dynamic analysis tools, integration and functional testing, etc.)

Consequence: forces all developers to become distributed systems engineers.

Meiklejohn et al. Filibuster 20

Netflix: Microservice Architecture
My List

Service and Team

Bookmarks
Service and Team

User Recommendations
Service and Team

API Gateway
Service and Team

Meiklejohn Reliably Releasing Software 21

Revisiting: Wikipedia

More interaction
points between

components.

Where there are
different versions at

each point.

And some mobile
clients might lag
several versions

behind.

Meiklejohn Reliably Releasing Software 22

Microservices and Backwards Compatibility

Microservices combine the problems of everything we’ve seen so far, but also:

Introduce message/data interchange interaction points between all services.1.

Increase the testing burden.2.

Same problem as the mobile client: backwards compatible messages and formats required where
the ”downstream” service must provide an API before it can be consumed by an upstream.

Rate of adoption of new fields, downstream changes, by upstream out of your control: still may
need to own APIs indefinitely, or at least a long time.

Anyone you call makes a change (i.e., “downstream”), you have to run tests for all features that
touch that with all combinations of feature flags (theirs, and yours.)

Anyone who calls you (i.e., “upstreams”) must run tests for all features that touch that with all
combinations of feature flags (theirs, and yours) whenever you make a change.

Bad enough? This must be done transitively for all services in the call chain.

Meiklejohn Reliably Releasing Software 23

Testing: Knowing Your Service

Second key to success: know your own service behavior through testing:

Don’t overly focus on unit testing, which typically mock too much behavior.1.

Invest in “functional service” testing. (i.e., treat your service as a function and test it’s input and
output)

2.

Test each of your APIs given a request you would receive from “upstream” service.a.

Assert that the intended response is returned by your service given the input.b.

Mock “downstream” service calls using mocking framework with expected result based on
the contract that they provide to you.

c.

Test variations of feature flags to ensure proper coverage.3.

This detects regressions in your own service code.

Ensure negative cases are tested: validation failures, errors from downstreams, etc.4.

First key to success: safe, dark rollouts with a rollout plan.

What’s my risk here?

Meiklejohn Reliably Releasing Software 24

Mock Drift

Mocks can drift and are only good when they reflect the actual service’s behavior you’re calling:

May get false positives where service works with mocked responses but fails with real services.1.

Run the same tests without mocked responses, to verify behavior matches real behavior.
(i.e., integration tests.)

2.

Real services responses might change from test execution to test execution because any
downstream services may employ their own feature flags which may alter responses.

3.

Meiklejohn Reliably Releasing Software 25

Detection of Mock Drift

Detecting mock drift can reveal bugs and service behavior changes:
(assuming good enough assertions)

Test passes, mock doesn’t match:1.

Backwards compatible change is made to interaction.
(e.g., new fields in the response)

Test fails, mock doesn’t match:2.

Backwards incompatible change is made to interaction.
(e.g., field has value change)

Isn’t 100% true, but is
a good litmus test for

what’s happening.

If all tests passed, no tests were added, but mock drift detected:

Missing necessary test coverage for a new feature.
(e.g., field has no assertions)

1.

Data is being passed through you to an upstream caller and not used directly by your service.
(e.g., field has no assertions)

2.

If your tests appear “flaky” it’s because there’s
something you’re not controlling for that’s

changing between executions:
often a feature flag that’s partially ramped.

“Worst” changes to test because it means that errors are not “encapsulated” to
the calling service – error might surface in any “upstream” service.

Meiklejohn et al. Filibuster 26

Netflix: Data Propagation
My List

Service and Team

API Gateway
Service and Team

…change in My List could break mobile client
and be undetected unless explicitly tested.

If API Gateway just passes data directly
from My List to mobile client…

By writing assertions for data you’re
passing upstream it will allow you to
preemptively detect issues that will

eventually surface elsewhere.

Meiklejohn Reliably Releasing Software 27

Testing Gotchas!
Be wary of manual testing.1.

Manually testing your feature (with the feature flag = true) doesn’t mean that all other features
stay working when your feature is on.

Make sure you hit the actual code paths where you made modifications.
This may require detailed logging or instrumentation to be sure.

Just because it worked in testing doesn’t mean it will work in production.2.

The services you call, your “downstream” services, can change between the time you tested and
the time you actually deploy and turn your feature on.

If you can, test in production with just your user before rolling your feature flag out.
Perform a final “smoke test.”

It’s always better to be overly conservative, as
you’d rather find the bug and not hear it through revenue loss or a customer complaint.

Production environment may not match testing environment.

Meiklejohn Resilient Microservice Applications by Design and Without The Chaos 28

Just One More Thing
My List

Service and Team

Bookmarks
Service and Team

User Recommendations
Service and Team

API Gateway
Service and Team

Servers can also fail!

Meiklejohn Reliably Releasing Software 29

Partial Failure

Meiklejohn Resilient Microservice Applications by Design and Without The Chaos 30

Partial Failure in Microservices: Different

Failed node causing connection errors.
Prior to removal by health check, application must still tolerate and respond to errors.

1.

…but, microservices are also susceptible to partial failure:

Bad deployments.
Number of nodes return error responses (e.g., 500 Internal Server Error) before removal.

2.

Service failures only with certain arguments.
Service returns errors when provided with certain arguments by a caller only. (e.g., NPE, etc.)

3.

Dependencies of a given RPC method may be malfunctioning.
Direct dependencies of a service may slow down, timeout, or fail in other ways.

4.

Developers may not consider partial failure unless they’ve (recently) encountered it before.
Success at scale requires automation in the local development environment and CI/CD
pipelines.

1.

2.

Challenges:

Meiklejohn Resilient Microservice Applications by Design and Without The Chaos 31

Microservice Application: Audible

Audible
Audiobook streaming service

Content
Delivery
Engine

Content
Delivery
Service

Activation

Ownership

Stats

Amazon
ElasticCache

Amazon
RDS

Amazon
RDS

Amazon
DynamoDB

Amazon
S3

(Assets)

Amazon
S3

(Metadata)

Audible
Mobile App

Audible
Download

Service

StatefulStateless

Internal RPC

Client

External RPC

Build the microservice application as if
it’s a monolithic application

One solution to partial failure:

1.

Fail the entire request
if any dependency returns a failure

2.

Alternatively,
should we embrace failure?

These are called hard dependencies.

Meiklejohn Resilient Microservice Applications by Design and Without The Chaos 32

Microservice Application: Netflix
My List

Service and Team

Bookmarks
Service and Team

User Recommendations
Service and Team

API Gateway
Service and Team

We do not want to fail when the bookmarks
service is unreachable or producing errors.

Embracing partial failure:

Meiklejohn Resilient Microservice Applications by Design and Without The Chaos 33

What should happen?

Client

API
Gateway

My List Ratings

User
Recs

Global
Recs

Bookmarks

Telemetry

Trending

User
Profiles

Developers specify alternative
application logic in the event of
dependency failure.

What actually happens?

These are called
soft dependencies.

Fallbacks:

We need to test it.

Example: Purchase Application

Meiklejohn Resilient Microservice Applications by Design and Without The Chaos 34

User Service Cart Service
Pricing

Adjustment
Service

…

Client

API
Gateway

DB DB DB DB

Fail Fail Fail

Fail

Err

Err

Err Err

RPC
getUser

RPC
getCart

Adj?
RPC

updateCrt

RPC
getAdj

End

Order Service

Fictional example,
but, inspired by

industrial example

RPC
emailDisc

FailErr

Pizza Delivery Example

 Eligible customer receives discount
 Eligible customer receives discount email
 All customers receive pizza

Purchase: Hard Dependencies

Meiklejohn Resilient Microservice Applications by Design and Without The Chaos 35

User Service Cart Service
Pricing

Adjustment
Service

…

Client

API
Gateway

DB DB DB DB

Fail Fail Fail

Fail

Err

Err

Err Err

RPC
getUser

RPC
getCart

Adj?
RPC

updateCrt

RPC
getAdj

End

Order Service

RPC
emailDisc

FailErr

Hard dependency:

Any hard dependency failure will cause
the application to return an error.

Cannot checkout without user info.

Cannot checkout without cart.

Applying adjustment failure, do not
complete order.

Adjustment lookup failure, do not
checkout.

Failure to send email on discount, do
not complete order.

Meiklejohn Reliably Releasing Software 36

Active Learning: Dependency Types

Partner up with you neighbor and answer the following:

What might we want to change about the way this application handles failure?
(i.e., the business logic, not the application behavior)

1.

“Failure of any dependency forces application to fail the checkout process.”

“Not great.”

How will we make sure they are “good” changes?
(i.e., the business logic doesn’t negatively affect the business.)

2.

You guessed it, I’m looking for metrics. What are they?
(you knew this question was coming.)

3.

Results of Testing the Application

Meiklejohn Resilient Microservice Applications by Design and Without The Chaos 37

“Failure of any dependency forces application to fail the checkout process.”

“Not great.”

Not being able to send the discount email shouldn’t cancel the order with an error.1.

Identified Problems:

Customers not eligible for a discount cannot checkout if pricing adjustment call fails.
(where, it would have returned $0, anyway.)

2.

To Fix: Allow the order to be processed regardless of email failure.

To Fix: Assume a pricing adjustment of $0 when the call fails.

Update Cart (on adjustment > $0) should continue to fail the checkout.3.

Ensure: Ask user who is eligible for an adjustment to try again where the call (may) succeed
as user may only be making purchase based on available discount (i.e., first time discount.)

Corollary:

Business logic decisions conditional on failure
that cannot be automatically determined.

Cannot reason about the RPC in isolation without
understanding the broader context.

Purchase: Ignored Soft Dependency Failures

Meiklejohn Resilient Microservice Applications by Design and Without The Chaos 38

User Service Cart Service
Pricing

Adjustment
Service

…

Client

API
Gateway

DB DB DB DB

Fail Fail Fail

Fail

Err

Err

Err Err

RPC
getUser

RPC
getCart

Adj?
RPC

updateCrt

RPC
getAdj

End

Order Service

RPC
emailDisc

FailErr

Ignore failure of email.
(e.g., swallow error)

End

RPC
emailDisc

Ignore
Fail

Soft dependency:

 Eligible customer receives discount
 Eligible customer receives discount email
 All customers receive pizza

Purchase: Soft Dependencies with Fallbacks

Meiklejohn Resilient Microservice Applications by Design and Without The Chaos 39

User Service Cart Service
Pricing

Adjustment
Service

…

Client

API
Gateway

DB DB DB DB

Fail Fail Fail

Fail

Err

Err

Err Err

RPC
getUser

RPC
getCart

Adj?
RPC

updateCrt

RPC
getAdj

End

Order Service

RPC
emailDisc

FailErr

End

RPC
emailDisc

Ignore
FailSoft dependency:

$0
Request doesn’t fail if pricing adjustment is unavailable,

but proceeds assuming $0 adjustment. (e.g., fallback)

Update cart is remains
hard dependency on adjustment > $0.

 Eligible customers asked to try checkout again.
 Unknown status customers assumed $0 discount.
 Discount email failure does not prevent checkout.
 All customers receive (ideally) receive pizza at correct price.

Meiklejohn Resilient Microservice Applications by Design and Without The Chaos 40

How Can We Do It?

Formal Methods
Provide specifications of behavior of all services that matched the implementation and
verify using a stateless- / explicit-state model checker. (e.g., TLC, CMC, etc.)
Significant up-front investment and maintenance due to required specialized knowledge.

Developer-centric, Development-First Resilience Testing
Integrate fault injection testing throughout the development and deployment process.
Fault injection as an extension of the existing functional testing process that also provides
guarantees of exhaustiveness with minimal developer overhead.

Chaos Engineering
Randomized fault-injection in production or staging with application observation.
Fails to simulate high-level fault types (e.g., exceptions of a certain type) and gives no
guarantee that all failures are covered due to the random nature of the approach.

Academic

Industry

Meiklejohn Resilient Microservice Applications by Design and Without The Chaos 41

Where to Start: Simple Mocking

My List
Service

Bookmarks
Service

User Recommendations
Service

API Gateway
Service

Simple mocks for network calls
can simulate failure as well as success.

Mocking failure:

Test my API gateway
service by sending it a
request to load page.

Replace with mock
that returns error.

Test asserts that
behavior is correct
when failure present.

Meiklejohn Reliably Releasing Software 42

In Conclusion

Identified the core challenges in making changes to software
safely and reliably in a distributed system.

Examined several authorship, testing, and rollout strategies
to release code safely.

Practiced identifying problematic changes and how to go
about making changes safely.

Any Questions?

	Let's Revisit
	Slide 1
	Slide 2: Let’s Revisit
	Slide 3: What About This Software?
	Slide 4: Scaling and Deployments: Intertwined
	Slide 5: Dark Launch
	Slide 6: Dark Launch: Observability
	Slide 7: What Are The Differences?
	Slide 8: Bugs?
	Slide 9: Active Learning: Metrics
	Slide 10: Databases: What’s Hard About This?
	Slide 11: What About This?
	Slide 12: RPCs and Message Formats
	Slide 13: Key Takeaways: Backwards Compatibility
	Slide 14: Key Takeaways: Rollouts and Rollbacks
	Slide 15: Key Takeaways: Backwards Compatability
	Slide 16: Key Takeaways: Deprecation
	Slide 17: Recall: Rollout Plan

	Microservices
	Slide 18: Microservice Applications
	Slide 19: Microservices: Socio-Technical Problem
	Slide 20: Netflix: Microservice Architecture
	Slide 21: Revisiting: Wikipedia
	Slide 22: Microservices and Backwards Compatibility

	Microservices: Testing
	Slide 23: Testing: Knowing Your Service
	Slide 24: Mock Drift
	Slide 25: Detection of Mock Drift
	Slide 26: Netflix: Data Propagation
	Slide 27: Testing Gotchas!

	Microservices: Failure
	Slide 28: Just One More Thing
	Slide 29: Partial Failure
	Slide 30: Partial Failure in Microservices: Different
	Slide 31: Microservice Application: Audible
	Slide 32: Microservice Application: Netflix
	Slide 33: What should happen?

	Purchase Application
	Slide 34: Example: Purchase Application
	Slide 35: Purchase: Hard Dependencies
	Slide 36: Active Learning: Dependency Types
	Slide 37: Results of Testing the Application
	Slide 38: Purchase: Ignored Soft Dependency Failures
	Slide 39: Purchase: Soft Dependencies with Fallbacks
	Slide 40: How Can We Do It?
	Slide 41: Where to Start: Simple Mocking

	In Conclusion
	Slide 42: In Conclusion

