
Reliably Releasing Software

Christopher S. Meiklejohn
Software Engineer
DoorDash

Foundations of Software Engineering

Meiklejohn Reliably Releasing Software 2

About Me

Started my career in telecommunications in 1998, and
I worked in until 2006 (Boston Marathon, Kraft Group) and then
Built Berklee Online (Berklee College of Music) until 2012.

Distributed database development at Basho and Mesosphere until 2016
Involved in CRDT research with SyncFree in Europe
Production code at at NHS (UK), Rovio (Angry Birds), Riot (League of
Legends)
Started my Ph.D. in Europe in 2016 while consulting on distributed
systems for Comcast, Adobe, IOHK, Helium, and Macrometa
before moving to Carnegie Mellon University in 2018.

Intern’d at Microsoft Research (3x) and Amazon’s Automated Reasoning
Group working on serverless (Durable Functions) and formal methods
(S3.)
Finished Ph.D. in Software Engineering focusing on building
reliable microservice applications in May 2024 at Carnegie Mellon.
(TA’d and co-instructed 15-313.)

Software Engineer at
DoorDash working on

Order Platform focusing on
reliability and the future of

Order Platform.

Meiklejohn Reliably Releasing Software 3

Goals

Identify the core challenges with modifying, testing, and
deploying applications safely in a microservice architecture.

Describe and differentiate the possible techniques for
ensuring reliable and safe delivery of software at scale.

Practice authoring a safe rollout plan for a new feature in a
microservice application.

Meiklejohn Reliably Releasing Software 4

How Do You Change This Software?

Modify
Implement one or more changes in the
application and build the new version of
the application.

Test
Test the application using a test suite or
QA process to ensure application works
correctly.

Release
Create new version of the software, users
close their existing version and install it
and open the new version.

Meiklejohn Reliably Releasing Software 5

App Upgrade: One Version To The Next

V1.0 V1.1

Similarly, if we want to scale up this application to more users, we just have
users install more copies of this application on their computer.

This detail will become important later.

Meiklejohn Reliably Releasing Software 6

What About This Software?

Monolithic

Microservice

Meiklejohn Reliably Releasing Software 7

What Are The Differences?

Location
Application runs on a server, and is not installed on
client’s device.

Scaling
Scaling is achieved by increasing the server
capacity, instead of installing the software on more
clients.

“Always On”
Applications are upgrade in place, typically aiming
for zero-downtime.

Meiklejohn Reliably Releasing Software 8

Scaling and Deployments: Intertwined
Vertical Scaling Horizontal Scaling

Rolling UpgradeRed/Black or Blue/Green

Scaling

Deployment

Meiklejohn Reliably Releasing Software 9

Bugs?

Rollouts Are Slow
Applications may have thousands of server
instances, rollouts can take multiple hours.

Bugs Might Take a While To Surface
Error rate might be low, might take a while
to detect, might be manually reported.

High Cost/Impact For Bugs
Every second of a bug may indicate possible
user error. (e.g., can’t request a ride)

Can’t Immediately Rollback
Not enough capacity to immediately rollback
(i.e., blue nodes) and deployment of old code
is as slow as the new code.

Rolling Upgrade

What are some possible solutions for
mitigating this risk?

Meiklejohn Reliably Releasing Software 10

Dark Launch

Solution: Dark Launch

Rollout with Features Dark
Perform rollout of code at the “same”
existing version with all new features turned
“off” – no-op rollout.

Incremental Ramp of Flag
Incrementally enable feature to users based
on percentage and roll out to employee (or
other limited cohort first) for early detection
(i.e., dogfooding.)

Rollback: First Response
Ensure that code can be rolled back
immediately on the first indication of issue.

Rolling Upgrade with Dark Feature

Incremental Feature Release

Remember to write tests with the
feature flag = false and true prior to

rollout!

Meiklejohn Reliably Releasing Software 11

Dark Launch: Observability

Error Rate for User Action

Bug last week

Bug this week

Normal
error rate

Error Rates
Use metrics tracking error rates and
compare with week-over-week for
derivations.

Ramp Rate

Feature flag gradually
enabled for users

How do you identify a rollout problem?

Hit Rate
Use metrics tracking new code execution
to track introduction of new feature.

Remember: some errors may be normal
depending on the metric.
Correlate them with the feature ramps.

Meiklejohn Reliably Releasing Software 12

Active Learning: Metrics

Partner up with you neighbor and answer the following:

Define a metric that let’s you track the feature rollout.1.

You are developing a ride sharing application and you’re launching a feature to allow users to
request priority rides.

Rate of users who are eligible to see the priority option and then see the priority option.

Define a metric that let’s you track successful usage of the feature.2.

Rate of users who see the priority option and receive a priority ride.

Define metric(s) that let’s you track error rate of the option.3.

Rate of users who see priority option, select it, but to not receive a priority ride when available.

Rate of users who should see priority option, but do not see the priority option.

Meiklejohn Reliably Releasing Software 13

What About This?

Modifications to DB + App
Many times you will have to modify the database
with the application for new features.

No Rolling Upgrades
Can’t synchronize rolling upgrade between app +
database, no rolling upgrade for DB, even
schema changes in distributed databases are
atomic across nodes.

Problems During Rolling Upgrade/Release
New version might be incompatible

with old DB.
Old version might be incompatible

with new DB version.

Meiklejohn Reliably Releasing Software 14

Active Learning: Database Changes

Partner up with you neighbor and answer the following:

What types of database changes can be safe in isolation?
(i.e., without requiring modification of the application)

Are there any application changes, which require DB changes, that are safe?
(i.e., application will rely on DB change, but rollout coordination is not needed.)

How can I safely add a field to the database, that the new version of my application will use?
(hint: use the techniques we’ve already discussed to figure out how to do this safely.)

1.

2.

3.

Meiklejohn Reliably Releasing Software 15

Database Changes: Adding a New Field

Add new field to the database using a migration.
New field added to the schema, but nothing uses it.
Nothing (i.e., indexes, integrity constraints, etc.) can use this field and field must be nullable.

1.

Dark Launch Application With Code To Write Field
Dark launch new version of application with code to begin writing the new field.
Gradually roll out feature that writes the new field.

2.
Code to write field may contain a

bug (e.g., serialization.)

Dark Launch Application With Code To Read Field
Dark launch new version of application with code to begin reading the new field.
Gradually roll out feature that writes the new field. Must handle nulls!

3.

Remove Migration Code
Deploy version of code without migration (i.e., feature flags.)
You can’t dark launch this, otherwise you’ll loop indefinitely.

4.

Code to read field may contain a
bug (e.g., logic error.)

Only after you’ve rolled out features to 100% of all users and waited for bug reports:

Meiklejohn Releasing Reliable Software 16

Exercise: Database Queries
Bob added a new field to the database following all of the best practices.

Added the column and dark launched code to begin reading the new column.1.

Ran a database migration off hours to back populate the new column.

Ramped up code to begin reading the new column.

Dark launched and rolled out code to stop reading old column by searching in the
code for SELECT/UPDATE statements that read the column.

2.

3.

4.

Now, Bob is asked to remove that column to save storage costs:

Bob removes column and site immediately fails to process any user requests because a query is still using
that field. Bob can’t rollback because a DROP COLUMN is destructive.

Partner up with you neighbor and answer the following:

How could Bob have reduced the risk of removing the database column?

Bonus Question: What went wrong?

1.

2.

Meiklejohn Releasing Reliable Software 17

Database Queries

What was the bug?

It was a SELECT * statement that did not directly reference the column name; however, the code did
reference the name much later, and in a different location making it difficult to search for the identifier
in a large code base.

How could this destructive, not-backwards-compatible change be done safer?

Rename the column, in order to find undetected usages but preserves rollback possibility.1.

Using tiered deprecation:

Drop column after renaming, which reduces risk, but does not eliminate probability, of usage.2.

This strategy can be applied everywhere: a number of incremental changes to identify usage of APIs
before making final destructive change.

Meiklejohn Reliably Releasing Software 18

Exercise: Data Serialization

Ride is an object that’s serializable and written into the
database.

Alice is making a change to add a priority column, a
Boolean, to indicate whether the ride is a priority ride or
not.

Partner up with you neighbor and answer the following:

What is wrong with this change?

How could this be done safer?

1.

2.

Value must be provided with a default value or
allowed to be null.

Deserialization will fail on all Ride’s that do not
contain the priority field. Also benefits from a unit test

that deserializes a record taken
from the database!

Meiklejohn Reliably Releasing Software 19

What About This?

Modifications to DB + App + Client
Many times you will have to modify the database
with the application and the mobile client for
new features.

Release Coordination
Can’t synchronize updates: mobile application
modifications must be done ahead of time and
submitted to the App Store/Google Play.

Data Interchange
Backwards compatible message formats must
be used and code must be able to handle feature
being absent/present.

Meiklejohn Reliably Releasing Software 20

RPCs and Message Formats

Same problem as the database, just with message formats and APIs, instead of the schema:

Data interchange must be backwards compatible format1.

Two new problem(s): version longevity and forced upgrades:

One you make an API and it’s used, you own it for life as users may choose not to upgrade.1.

JSON, depending on the serializer and data mapping layer.

Google’s GRPC is natively backwards compatible when adding new fields.

APIs must be rolled out prior to mobile app that consumes them.2.

Backwards compatibility may have to be across several versions.2.

Meiklejohn Reliably Releasing Software 21

Key Takeaways: Backwards Compatibility

You’re (almost always) developing a distributed system even with a monolithic architecture.
(i.e., most monolithic applications use a database and have an associated mobile application.)

Therefore, the key to safely rolling out changes is backwards compatibility.

Backwards compatible database changes.1.

Backwards compatible message and data formats for data interchange. 2.

Meiklejohn Reliably Releasing Software 22

Key Takeaways: Rollouts and Rollbacks

Backwards compatibility with controlled rollouts where rollback is always possible.

Release features dark, using feature flags or other mechanisms.1.

Controlled rollouts over time to mitigate risk by gradually introducing changes.2.

At every step, ensure you have the ability to rollback.3.

Have a rollout plan and runbook for every step.4.

Meiklejohn Reliably Releasing Software 23

Key Takeaways: Testing and Deprecation

How do you ensure that code is backwards compatible:

Test existing features with feature flag = off, to ensure no regressions and no-op/dark rollout.1.

Test existing features with feature flag = on, to ensure no regressions in existing behavior.2.

Test new features with feature flag = on, to exercise dark launched code.3.

Cleanup tests after rollout.5.

When you must make a backwards incompatible change:

Use tiered deprecation where possible.1.

At minimum 3 rollout events: add v1/v2 compatibility and enable v2, disable v1, cleanup.2.

Some APIs have to be supported “for life”, if they are exposed to clients and end users.3. Not only clients,
but also APIs.

Testing should include legacy data formats.4.

Meiklejohn Reliably Releasing Software 24

Microservice Architectures

Uber
As of 2016, Uber had 2,200 services in their microservice platform.
120 services were involved in obtaining a ride share as a consumer.

Netflix
As of 2021, Netflix had 1,000 services in their microservice platform
used to deliver streaming services.

DoorDash
As of 2022, DoorDash has over 100 services in their microservice
platform used to provide food delivery and ordering services.

Microservice applications are the most common and complex type of distributed application being built today.

As of 2021, all 50 companies in the Fortune 50 were hiring for roles that mentioned microservices.

Microservice architecture is an architectural style where applications are constructed from
services that communicate over the network using RPC and are developed, scaled and deployed independently.

Meiklejohn et al. Filibuster 25

Netflix: Microservice Architecture
My List

Service and Team

Bookmarks
Service and Team

User Recommendations
Service and Team

API Gateway
Service and Team

Why microservice architectures?
Improves developer productivity
(e.g., Fowler ‘14, DoorDash ’20) and
application scalability.

Meiklejohn Reliably Releasing Software 26

What About This?

More interaction
points between

components.

Where there are
different versions at

each point.

And some mobile
clients might lag
several versions

behind.

Meiklejohn Reliably Releasing Software 27

Microservices and Backwards Compatibility

Microservices combine the problems of everything we’ve seen so far, but also:

Introduce message/data interchange interaction points between all services.1.

Increase the testing burden.2.

Same problem as the mobile client: backwards compatible messages and formats required where
the ”downstream” service must provide an API before it can be consumed by an upstream.

Rate of adoption of new fields, downstream changes, by upstream out of your control: still may
need to own APIs indefinitely, or at least a long time.

Anyone you call makes a change (i.e., “downstream”), you have to run tests for all features that
touch that with all combinations of feature flags (theirs, and yours.)

Anyone who calls you (i.e., “upstreams”) must run tests for all features that touch that with all
combinations of feature flags (theirs, and yours) whenever you make a change.

Bad enough? This has to be done transitively for all services in the call chain.

Meiklejohn et al. Filibuster 28

Netflix: Testing
My List

Service and Team

API Gateway
Service and Team

If My List makes a change, I
have to make sure it’s still
compatible with the API

Gateway through testing.

…and, I might even need to test
the API Gateway with the

Mobile App to make sure it’s
still compatible if my change to

My List altered the API
Gateway’s response format.

This is intractable,
so how can we make progress and get

work done?

Meiklejohn Reliably Releasing Software 29

Testing: Knowing Your Service

First key to success: know your own service behavior through testing:

Don’t overly focus on unit testing, which typically mock too much behavior.1.

Invest in “functional service” testing. (i.e., treat your service as a function in a call graph)2.

Test each of your APIs given a request you would receive from “upstream” service.a.

Assert that the intended response is returned by your service given the input.b.

Mock “downstream” service calls using mocking framework with expected result based on
the contract that they provide to you.

c.

Test variations of feature flags to ensure proper coverage.3.

This detects regressions in your own service code.

Ensure negative cases are tested: validation failures, errors from downstreams, etc.4.

Meiklejohn Reliably Releasing Software 30

Mock Drift

Mocks can drift and are only good when they reflect the actual service’s behavior you’re calling:

May get false positives where service works with mocked responses, but fails with real services.1.

Run the same tests without mocked responses, to verify behavior matches real behavior.
(i.e., integration tests.)

2.

Real services responses might change from test execution to test execution because any
downstream services may employ their own feature flags which may alter responses.

3.

Meiklejohn Reliably Releasing Software 31

Detection of Mock Drift

Detecting mock drift can reveal bugs and service behavior changes:
(assuming good enough assertions)

Test passes, mock doesn’t match:1.

Backwards compatible change is made to interaction.
(e.g., new fields in the response)

Test fails, mock doesn’t match:2.

Backwards incompatible change is made to interaction.
(e.g., field has value change)

Isn’t 100% true, but is
a good litmus test for

what’s happening.

If all tests passed, no tests were added, but mock drift detected:

Missing necessary test coverage for a new feature.
(e.g., field has no assertions)

1.

Data is being passed through you to an upstream caller and not used directly by your service.
(e.g., field has no assertions)

2.

If your tests appear “flaky” it’s because there’s
something you’re not controlling for that’s

changing between executions:
often a feature flag that’s partially ramped.

“Worst” changes to test because it means that errors are not “encapsulated” to
the calling service – error might surface in any “upstream” service.

Meiklejohn et al. Filibuster 32

Netflix: Data Propagation
My List

Service and Team

API Gateway
Service and Team

…change in My List could break mobile client
and be undetected unless explicitly tested.

If API Gateway just passes data directly
from My List to mobile client…

By writing assertions for data you’re
passing upstream it will allow you to
preemptively detect issues that will

eventually surface elsewhere.

Meiklejohn Reliably Releasing Software 33

Testing Gotchas!
Be wary of manual testing.1.

Manually testing your feature (with the feature flag = true) doesn’t mean that all other features
stay working when your feature is on.

Make sure you hit the actual code paths where you made modifications.
This may require detailed logging or instrumentation to be sure.

Just because it worked in testing doesn’t mean it will work in production.2.

The services you call, your “downstream” services, can change between the time you tested and
the time you actually deploy and turn your feature on.

If you can, test in production with just your user before rolling your feature flag out.
Perform a final “smoke test.”

It’s always better to be overly conservative, as
you’d rather find the bug and not hear it through revenue loss or a customer complaint.

Production environment may not match testing environment.

Meiklejohn Reliably Releasing Software 34

Recall: Rollout Plan

What should be included in a great rollout plan:

Steps to take in rolling out your change in sequence.1.

Metrics to monitor at every single step along the way.2.

Positive (e.g., feature hit, feature candidate for success, feature success)a.

Negative (e.g., feature selected, didn’t get, feature not present as option)b.

Rollback strategy at every in the plan.3.

Backwards compatible changes for new features, launched dark.a.

Tiered deprecation, 3-rollout strategy for breaking changes only if necessary.b.

Need to be able to revert every step if something goes wrong.a.

Testing.0.

Meiklejohn Reliably Releasing Software 35

In Conclusion

Identified the core challenges in making changes to software
in a distributed system.

Examined a number of authorship, testing, and rollout
strategies to release code safely.

Practiced identifying problematic changes and how to go
about making changes safely.

Any Questions?

	Introduction
	Slide 1
	Slide 2: About Me
	Slide 3: Goals

	Problem Statement
	Slide 4: How Do You Change This Software?
	Slide 5: App Upgrade: One Version To The Next
	Slide 6: What About This Software?

	Monolithic
	Slide 7: What Are The Differences?
	Slide 8: Scaling and Deployments: Intertwined
	Slide 9: Bugs?
	Slide 10: Dark Launch
	Slide 11: Dark Launch: Observability
	Slide 12: Active Learning: Metrics

	Monolithic with Database
	Slide 13: What About This?
	Slide 14: Active Learning: Database Changes
	Slide 15: Database Changes: Adding a New Field
	Slide 16: Exercise: Database Queries
	Slide 17: Database Queries
	Slide 18: Exercise: Data Serialization

	Monolithic with Mobile Client
	Slide 19: What About This?
	Slide 20: RPCs and Message Formats

	Key Takeaways
	Slide 21: Key Takeaways: Backwards Compatibility
	Slide 22: Key Takeaways: Rollouts and Rollbacks
	Slide 23: Key Takeaways: Testing and Deprecation

	Microservices
	Slide 24: Microservice Architectures
	Slide 25: Netflix: Microservice Architecture
	Slide 26: What About This?
	Slide 27: Microservices and Backwards Compatibility
	Slide 28: Netflix: Testing

	Testing
	Slide 29: Testing: Knowing Your Service
	Slide 30: Mock Drift
	Slide 31: Detection of Mock Drift
	Slide 32: Netflix: Data Propagation
	Slide 33: Testing Gotchas!

	In Conclusion
	Slide 34: Recall: Rollout Plan
	Slide 35: In Conclusion

