
Open Source
17-313 Spring 2024

Foundations of Software Engineering

https://cmu-313.github.io

Michael Hilton, Austin Henley, and Nadia Nahar

https://cmu-313.github.io/

Administrivia

• P4 Clarification
• Grading will be adjusted to account for technical difficulties.

• Final Exam attendance Mandatory:
• Monday, Monday, May 5, 2025 01:00pm - 04:00pm

• Location TBD

Learning Goals

• Distinguish between open-source software, free software, and commercial
software.

• Identify the common types of software licenses and their implications.

• Distinguish between copyright and intellectual property.

• Express an educated opinion on the philosophical/political debate between
open source and proprietary principles.

• Describe how open-source ecosystems work and evolve, in terms of
maintainers, community contribution, and commercial backing

• Identify various concerns of commercial entities in leveraging open-source,
as well as strategies to mitigate these.

Early(ish) Course Feedback

Keep Doing

• Strong TA feedback

• In class activities

• Candy

• Group work

• Team evaluation forms

• Stories

• Enthusiasm

Start Doing

• SE Workplace dynamics contents

• Faster feedback

• More technical (coding) instruction

• More Details in the assignments (also TLDR for the assignments)

• More Dog pictures

• More NodeBB intro

• More days of office hours

• Releasing assignments earlier

Stop Doing

• So many case studies

• NodeBB (several comments on this)

• Teamwork quizzes on Canvas (they should be on gradescope)

• Exams and attendance

Open Source

Background: laws and open source

• Copyright protects creative, intellectual and artistic works —
including software

• Alternative: public domain (nobody may claim exclusive
property rights)

• Trademark protects the name and logo of a product

• OSS is generally copyrighted, with copyright retained by
contributors or assigned to entity that maintains it

• Copyright holder can grant a license for use, placing
restrictions on how it can be used (perhaps for a fee)

https://xkcd.com/2347/

What is Open-Source
Software?

Open-source Proprietary

What is Open-Source Software (OSS)?

• Source code availability

• Right to modify and creative derivative works

• (Often) Right to redistribute derivate works

Contrast with proprietary software: a black box

• Intention is to be used, not examined, inspected, or
modified.

• No source code – only download a binary (e.g., an app) or
use via the internet (e.g., a web service).

• Often contains an End User License Agreement (EULA)
governing rights and liabilities.

• EULAs may specifically prohibit attempts to understand
application internals.

Example: Bank app

on my phone

Early open source: UNIX to BSD

• Hardware was not yet standardized, computer vendors
focused on hardware, building new operating systems for
each platform

• Much software development focused in
academic labs, and AT&T’s Bell Labs

• Unix created at Bell Labs using the new,
portable language “C”, licenses initially
released with source code

• 1978: UC Berkeley begins distributing
their own derived version of Unix (BSD)

• AT&T is prohibited from entering new
telecommunications businesses
(can’t make OS a product)

IBM 704 at NASA Langley in 1957 (Public domain)

The BSD License is Permissive

• Authors of BSD created a license for the OS that:

1. Required those using it to credit the university

2. Limited liability for (mis)-use

BSD Copyr ight in OS X boot sequence

Copyright (c) <year>, <copyright holder> All rights reserved.

Redistr ibution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1.Redistr ibutions of source code must retain the above copyright not ice, this list of conditions and the following disclaimer .

2.Redistr ibutions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other mater ials provided with the distribution.

3.All advertising materials mentioning features or use of this software must d isplay the following acknowledgement: This product includes software developed by the <copyrigh t holder>.

4.Neither the name of the <copyright holder> nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY <COPYRIGHT HOLDER> AS IS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED…. (move waivers of liability)

Original BSD license

UNIX to GNU’s Not Unix

• Timeline
• 1978: UC Berkeley begins distributing

their own derived version of Unix (BSD)

• 1983: AT&T broken up by DOJ, UNIX
licensing changed: no more source releases

• Competing commercial vendors all package and
sell their derivations of UNIX (AT&T, HP, Sun, IBM,
SGI)

• Also 1983: “Starting this Thanksgiving I am going
to write a complete Unix-compatible software
system called GNU (Gnu’s Not Unix), and give it
away free to everyone who can use it”

GNU logo (a gnu wildebeest)

Free software as a Philosophy

• “Free as in Speech, not as in beer”
Richard Stallman’s Free Software Foundation —

free as in liberties

• Freedom 0: run code as you wish, for any
purpose

• Freedom 1: study how code works, and
change it as you wish

• Freedom 2: redistributed copies (of original) so
you can help others

• Freedom 3: distribute copies of your modified
version to others

Richard M Stallman (Licensed under GFDL)

Free software as a Philosophy

• “Free as in Speech, not as in beer”
FSF: software licensed under GNU Public License (GPL), considering questions

like:

• Required to redistribute modifications (under same license)? Yes, “copyleft"

• Can you combine it with more restrictive licenses? No, not even with BSD!

Alternative (more like BSD):
“Do whatever you want with this software, but don’t blame me if it doesn’t work” freeware

Copyleft v. permissive

• Can I combine OSS with my product, releasing my product
under a different license (perhaps not even OS)?

• Permissive licenses encourage adoption by permitting this
practice

• Copyleft “protects the commons” by having all linked code
under same license, transitively requiring more sharing

• Philosophy: do we force participation, or try to
grow/incentivize it in other ways?

GNU/Linux (1991-Today)
• Stallman set out to build an operating system in 1983, ended up

building utilities needed by an operating system (compiler, etc)

• Linux is built around and with the GNU utilities, licensed under
GPL

• Rise of the internet, demand for internet servers drives demand
for cheap/free OS

• Companies adopted and support Linux for enterprise customers

• IBM committed over $1B; Red Hat and others

Netscape’s open source gambit

• Netscape was dominant web browser early 90’s

• Business model: free for home and education
use, companies pay

• Microsoft entered browser market with Internet
Explorer, bundled with Windows95, soon
overtakes Netscape in usage (free with Windows)

• January 1998: Netscape first company to open
source code for proprietary product (Mozilla)

Usage Share of Netscape Navigator

Netscape creates a new license and model

• Until Netscape, much of OSS was the FSF and its GPL

• Open Source coined in 1998 by the Open Source Initiative
to capture Netscape’s aim for an open development
process

• New licenses follow, e.g. MIT, Apache, etc. just like BSD, but
without the advertising part

• Publisher Tim O’Reilly organizes a Freeware Summit later
in 1998, soon rebranded as Open Source Summit

• Open Source is a development methodology; free software is
a social movement

— Richard Stallman
Tim O’Reilly

Photo via Chr istopher Michel/Flickr, CC BY 2.0

Open source initiative logo

Perception (from some):

• Anarchy

• Demagoguery

• Ideology

• Altruism

Why Go Open Source (vs. Proprietary) ?

Advantages Disadvantages

Why Go Open Source (vs. Proprietary) ?

Advantages

• Transparency, gain user trust

• Many eyes: crowd-source bug reports
and fixes

• Security: more likely for vulnerabilities
to be quickly identified

• Community and adoption: get others
to contribute features, build stuff
around you, or fork your project

Disadvantages

• Reveal implementation secrets

• Many eyes: users can find faults more
easily

• Security: more likely for others to find
vulnerabilities first

• Control: You may not be able to
influence the long-term direction of
your platnform

Open-Source Ecosystems
How OSS is developed

The Cathedral and the Bazaar

The Bazaar won

Cathedral

• Developed centrally by a
core group of members

• Available for all once
complete (or at releases)

• Examples: GNU Emacs,
GCC (back in the 1990s)

• “Sort-of” examples today:
Chrome, IntelliJ

Bazaar

• Developed openly and
organically

• Wide participation (in
theory, anyone can
contribute)

• Examples: Linux

OSS has many stakeholders /
contributors
• Core members

• Often (but not always) includes the original creators
• Direct push access to main repository
• May be further split into admin roles and developers

• External contributors
• File bug reports and report other issues
• Contribute code and documentation via pull requests

• Other supporters
• Beta testers (users)
• Sponsors (financial or platform)
• Steering committees or public commenters (for standards and RFCs)

• Spin-offs
• Maintainers of forks of the original repository

Contributing processes

• Mature OSS projects often have strict contribution
guidelines
• Look for CONTRIBUTING.md or similar

• Common requirements:
• Coding style (recall: linters) and passing static checks

• Inclusion of test cases with new code

• Minimum number of code reviews from core devs

• Standards for documentation

• Contributing licensing agreements (more on that later)

Governence

• Some OSS projects are managed by for-profit firms

• Examples: Chromium (Google), Moby (Docker), Ubuntu (Canonical), TensorFlow (Google),
PyTorch (Meta), Java (Oracle)

• Contributors may be a mix of employees and community volunteers

• Corporations often fund platforms (websites, test servers, deployments, repository
hosting, etc.)

• Corporations usually control long-term vision and feature roadmap

• Many OSS projects are managed by non-profit foundations or ad-hoc communities
• Examples: Apache Hadoop/Spark/Hbase/Kafka/Tomcat (ASF), Firefox (Mozilla), Python

(PSF), NumPy (community)

• Foundations fund project infrastructure via charitable donations

• Long-term vision often developed via a collaborative process (e.g., Apache) or by
benevolent dictators (e.g., Python, Linux)

• Corporations still heavily rely on community-owned OSS projects

• Many OSS non-profits are funded by Big Tech (e.g., Mozilla by Google)

Example: Apache

https://www.apache.org/theapacheway/

Corporate outlook towards open-
source has evolved over the years

“…most of you steal your software…”

Risks in not open-sourcing?

Use of open source software within companies

• Is the license compatible with our intended use?

• More on this later

• How will we handle versioning and updates?
• Does every internal project declare its own versioned dependency or do we all agree on

using one fixed (e.g., latest) version?

• Sometimes resolved by assigning internal “owners” of a third-party dependency, who
are responsible for testing updates and declaring allowable versions.

• How to handle customization of the OSS software?
• Internal forks are useful but hard to sync with upstream changes.

• One option: Assign an internal owner who keeps internal fork up-to-date with upstream.

• Another option: Contribute all customizations back to upstream to maintain clean
dependencies.

• Security risks? Supply chain attacks on the rise.

https://xkcd.com/2347/

Software Licenses
Note: I am not a lawyer (this is not legal advice)

https://www.statista.com/statistics/1245643/worldwide-leading-open-source-licenses/

Which license to choose?

GNU General Public License: The Copyleft License

• Nobody should be restricted by the software they use. There are
four freedoms that every user should have:
● the freedom to use the software for any purpose,

● the freedom to change the software to suit your needs,

● the freedom to share the software with your friends and neighbors, and

● the freedom to share the changes you make.

• Code must be made available

• Any modifications must be relicensed under the same license
(copyleft)

Risks of “copyleft” licenses

• Example: GNU GPL

• Require licensing derivative works also with same license
• This is intentional!

• Depending on a GPL project from within a proprietary or
differently-licensed codebase is disaster
• Viral effect of polluting everything else with GPL requirement

• Most companies will avoid GPL code with a ten-foot pole
• Expect vetting process before engineers are allowed to use third-party

libraries from GitHub, etc.

Lesser GNU Public License (LGPL)

• Software must be a library

• Similar to GPL but does not consider dynamic binding as
“derivative work”

• So, proprietary code can depend on LGPL libraries as long as
they are not being modified

• See also: GPL with classpath exception (e.g., Oracle JDK)

MIT License

• Simple, commercial-friendly license

• Must retain copyright credit

• Software is provided as is

• Authors are not liable for software

• No other restrictions

Apache License

• Similar to MIT license

• Not copyleft

• Not required to distribute source code

• Does not grant permission to use project’s trademark

• Does not require modifications to use the same license

BSD License

• No liability and provided as is.

• Copyright statement must be included in source and binary

• The copyright holder does not endorse any extensions without
explicit written consent

Creative Commons (CC)

• More common for licensing data-sets instead of code
• Examples: images, websites, documentation, slides, plots, videos

• CC-BY (attribution only; derivatives allowed)

• CC-BY-SA (attribution and share-alike for derivates)

• CC-BY-ND (attribution and no derivatives)

Dual License Business Model

• Released as GPL
which requires a
company using the
open source
product to open
source it’s
application

• Or companies can
pay $2,000 to
$10,000 annually to
receive a copy of
MySQL with a more
business friendly
license

Risk: Incompatible Licenses

• Sun open-sourced OpenOffice, but when Sun was acquired by
Oracle, Oracle temporarily stopped the project.

• Many of the community contributors banded together and
created LibreOffice

• Oracle eventually released OpenOffice to Apache

• LibreOffice changed the project license so LibreOffice can copy
changes from OpenOffice but OpenOffice cannot do the same
due to license conflicts

Copyright vs. Intellectual Property (IP)

• IP and Patents cover an idea for solving a problem
• Examples: Machine designs, pharma processes to manufacture certain

drugs, (controversially) algorithms

• Have expiry dates. IP can be licensed or sold/transferred for $$$.

• Copyrights cover particular expressions of some work
• Examples: Books, music, art, source code

• Automatic copyright assignment to all new work unless a license
authorizes alternative uses.

• Exceptions for trivial works and ideas.

Contributor Licensing Agreements (CLA)

• Often a requirement to sign these before you can contribute to
OSS projects
• Scoped only to that project

• Assigns the maintainers specific rights over code that you
contribute
• Without this, you own the copyright and IP for even small bug fixes and

that can cause them legal headaches in the future

Software Patents

Software Patents:
The Good, The Bad, and The Ugly

Venice, 1474

England, 1566

Today: USA

https://www.popularmechanics.com/technology/design/g20051677/patents-changed-the-world

What is a patent? New. Useful. Non-obvious.

“A patent is an exclusive right granted for an invention, which is a
product or a process that provides, in general, a new way of doing
something, or offers a new technical solution to a problem. To
get a patent, technical information about the invention must be
disclosed to the public in a patent application.”

https://www.wipo.int/patents/en

What rights do patents grant?

• Patents don’t give you the right to make, use, or sell an
invention.

• Patents do give you the right to exclude others from making,
using, and selling an invention for the term of a patent (20 years)

● stop or sue others

● licensing and royalties

What’s the difference? Patents vs. Copyright

• Copyrights cover the details of expression of a work

• Copyrights don't cover any ideas
Patents only cover ideas and the use of ideas

• Copyrights happen automatically.
Patents are issued by a patent office in response to an
application.

Why do patents exist?

• Encourage disclosure of inventions

• Reward invention and creativity

• Protect investment of capital into R&D

• Encourage the market to “design around”

• Protect small companies from large ones

Software Patents

Patent or not?

Patent or not?

1. Running bingo on a computer

2. Using a computer to help users plan meals while achieving diet goals

3. Using a computer to order a pizza with customized toppings

4. Prompting a user before establishing a new network connection

5. Automatically notifying users when an item is picked up or delivered

6. Using a computer network to ask people to complete tasks and then wait
for them to do them

7. Using SMS to perform tasks (e.g., checking bank balance)

8. Selecting ALL images in a CAPTCHA that match a given text

The software patent system is broken!

Alice vs. CLS Bank (2014)

Image

https://www.orrick.com/Articles/The-Effect-of-the-Alice-Decision-on-Software-and-3D-Printing-Patents

https://arstechnica.com/tech-policy/2014/06/supreme-court-smashes-do-it-on-a-computer-patents-in-9-0-opinion

Problem: Inventive step and non-obviousness

US5960411A

US5301348A

US5301348A

https://www.statista.com/statistics/256554/number-of-patent-application-filings-in-the-us

https://www.statista.com/statistics/256554/number-of-patent-application-filings-in-the-us

https://worldwide.espacenet.com/patent/search/family/023268567/publication/US5301348A?q=pn=US5301348
https://www.statista.com/statistics/256554/number-of-patent-application-filings-in-the-us

Problem: Long patent pendencies and terms

https://www.uspto.gov/sites/default/files/documents/USPTOFY21PAR.pdf

https://www.uspto.gov/sites/default/files/documents/USPTOFY21PAR.pdf

https://www.uspto.gov/sites/default/files/documents/USPTOFY21PAR.pdf

Problem: Incompatibility

• PNG was invented to avoid GIF patent issues

• Opus is a patent-free MP3 alternative

• AV1 vs H265

Problem: Independent discovery doesn’t matter!

“The idea that I can be presented with a
problem, set out to logically solve it with the
tools at hand, and wind up with a program
that could not be legally used because
someone else followed the same logical steps
some years ago and filed for a patent on it is

horrifying.”

John Carmack

Problem: Only large organizations benefit

• The patent system relies on people to challenge bad patents
● requires considerable time, money, and legal expertise

● the US legal system requires both parties to pay legal fees (c.f., losers
pay costs in Europe) *

• US software patents cost between $15,000 to $45,000!
● that’s before you even apply for international patents!

https://www.patenttrademarkblog.com/how-much-patent-costs

https://www.eff.org/issues/patent-busting-project

Problem: Non-Practicing Entities (Patent Trolls)

Problem: Innovation is Stifled

“As a developer for a small startup, absurd software
patents are a constant worry. Stories abound of people
like us getting pressured out of existence over the use of
incredibly vague, basic interface elements and system
components.”

Image

“Software patents are generally written in vague and
nontechnical legal language, which obfuscates the patent
in question . . . and also makes it easy to dramatically
extend the patent to elements not considered at all when
the patent was originally filed.”

https://www.eff.org/document/defend-innovation-how-fix-our-broken-patent-system

This American Life: When Patents Attack!

• Innovatio sued libraries and coffee shops
for providing WiFi in a public space

• Boadin has sued various media outlets,
claiming that its patents are infringed
whenever a word or phrase on your
computer autocompletes

• NPHJ claims they hold a patent on
“scanning and emailing documents”. They
tried to sued non-profits for $1000 per
employee in damages.

Image

https://www.thisamericanlife.org/496/when-patents-attack-part-two

https://www.thisamericanlife.org/496/when-patents-attack-part-two

Image

https://www.eff.org/deeplinks/2022/05/patent-troll-uses-ridiculous-people-finder-patent-sue-small-dating-companies

https://www.eff.org/deeplinks/2022/05/patent-troll-uses-ridiculous-people-finder-patent-sue-small-dating-companies

Image

• Zoosk has a website that mobile devices can connect to
• Zoosk’s server collects information from the mobile devices, including location and unique device identifiers
• Zoosk users can send and accept invitations to connect with and send messages to each other.
• Zoosk shares profile information of connected users, who are “members of a same social network” (i.e., they’re on Zoosk)
• Zoosk can connect users who are in the immediate vicinity of each other, or a particular distance away

https://www.eff.org/
https://patents.google.com/patent/US9264875/en

Problem: Open Source is under attack, too!

ImageImage

https://www.zdnet.com/article/patent-troll-attacks-against-open-source-projects-are-up-100-since-last-year-heres-why/
https://www.linuxfoundation.org/blog/blog/ensuring-patents-foster-innovation-in-open-source

What next?

• Alternative licensing models
● The Defensive Patent License (DPL)

● The Open Invention Network (OIN)

● License on Transfer (LOT)

• Bogus patent bounties

• Unified Patents

• Commonsense reform

• Abolish software patents?

Image

https://www.unifiedpatents.com/
https://blog.cloudflare.com/project-jengo-redux-cloudflares-prior-art-search-bounty-returns

	Slide 1: Open Source
	Slide 2: Administrivia
	Slide 3: Learning Goals
	Slide 4: Early(ish) Course Feedback
	Slide 5: Keep Doing
	Slide 6: Start Doing
	Slide 7: Stop Doing
	Slide 8: Open Source
	Slide 9: Background: laws and open source
	Slide 10
	Slide 11: What is Open-Source Software?
	Slide 12
	Slide 13: What is Open-Source Software (OSS)?
	Slide 14: Contrast with proprietary software: a black box
	Slide 15
	Slide 16: Early open source: UNIX to BSD
	Slide 17: The BSD License is Permissive
	Slide 18: UNIX to GNU’s Not Unix
	Slide 19: Free software as a Philosophy
	Slide 20: Free software as a Philosophy
	Slide 21: Copyleft v. permissive
	Slide 22: GNU/Linux (1991-Today)
	Slide 24: Netscape’s open source gambit
	Slide 25: Netscape creates a new license and model
	Slide 26
	Slide 27: Why Go Open Source (vs. Proprietary) ?
	Slide 28: Why Go Open Source (vs. Proprietary) ?
	Slide 29: Open-Source Ecosystems
	Slide 30: The Cathedral and the Bazaar
	Slide 31: The Bazaar won
	Slide 32: OSS has many stakeholders / contributors
	Slide 33: Contributing processes
	Slide 34: Governence
	Slide 35: Example: Apache
	Slide 36: Corporate outlook towards open-source has evolved over the years
	Slide 37: Risks in not open-sourcing?
	Slide 38: Use of open source software within companies
	Slide 39
	Slide 40: Software Licenses
	Slide 41
	Slide 42: Which license to choose?
	Slide 43: GNU General Public License: The Copyleft License
	Slide 45: Risks of “copyleft” licenses
	Slide 46: Lesser GNU Public License (LGPL)
	Slide 47: MIT License
	Slide 48: Apache License
	Slide 49: BSD License
	Slide 50: Creative Commons (CC)
	Slide 51: Dual License Business Model
	Slide 52: Risk: Incompatible Licenses
	Slide 53: Copyright vs. Intellectual Property (IP)
	Slide 54: Contributor Licensing Agreements (CLA)
	Slide 55: Software Patents
	Slide 56: Software Patents: The Good, The Bad, and The Ugly
	Slide 57: Venice, 1474
	Slide 58: England, 1566
	Slide 59: Today: USA
	Slide 60: What is a patent? New. Useful. Non-obvious.
	Slide 61: What rights do patents grant?
	Slide 62: What’s the difference? Patents vs. Copyright
	Slide 63: Why do patents exist?
	Slide 64: Software Patents
	Slide 65: Patent or not?
	Slide 66: Patent or not?
	Slide 67: The software patent system is broken!
	Slide 68: Alice vs. CLS Bank (2014)
	Slide 69: Problem: Inventive step and non-obviousness
	Slide 70: Problem: Long patent pendencies and terms
	Slide 71: Problem: Incompatibility
	Slide 72: Problem: Independent discovery doesn’t matter!
	Slide 73: Problem: Only large organizations benefit
	Slide 74: Problem: Non-Practicing Entities (Patent Trolls)
	Slide 75: Problem: Innovation is Stifled
	Slide 76: This American Life: When Patents Attack!
	Slide 77
	Slide 78: Problem: Open Source is under attack, too!
	Slide 79: What next?

