
Lecture Notes: Requirements

17-313: Foundations of Software Engineering
Claire Le Goues and Michael Hilston

Requirements play a major role in sinking software projects. Building the wrong thing, failing
to build the right thing, or building a thing that would be the right thing under different cir-
cumstances, are all common contributors to real-world project failures. Requirements engineering
is the process of capturing in symbolic representation a worldly computational problem so that
the statements obtained by following rules of symbolic manipulation are useful statements once
translated back into the language of the world [Scherlis 1989].

In plainer English: requirements engineering seeks to (1) figure out what system should be
built, and then (2) express those ideas such that the correct thing can be verifiably built. The first is
a question of knowledge acquisition, addressing how to capture all relevant detail about a proposed
system and then determine whether that knowledge is complete and consistent. The second is a
question of knowledge representation: Once captured, how do we express it most effectively, such
that it is received consistently by all the different people who will interact with it?

(We also need to know how to check requirements for correctness, consistency, and imple-
mentability; how to check that they’ve been represented faithfully; and how to maintain require-
ments as they change and throughout the implementation process. We focus in this course pri-
marily on elicitation and representation.)

A challenge is that the word “requirements” is used inconsistently throughout the software
industry. It can mean everything from the vague idea your cofounder has about an awesome new
app to a detailed and lengthy Software Requirements Specification (SRS) used to guide bidding
and contracting for a large IT acquisition. In these notes, we drill down into formal requirements
engineering to some degree of detail, because in so doing we will better understand the challenges
of requirements and the techniques and terminology that can be used to overcome some of those
challenges. We won’t write a full SRS document, however!

Requirement types and their expression

We divide requirements into three broad categories: (1) functional requirements, (2) quality re-
quirements,1 and (3) domain assumptions.2

Functional requirements and implementation bias

The functional requirements describe what the machine should do. They cover the inputs and
expected outputs of the system, its interface with the world, and how it will respond to events.

1The literature often uses the term “non-functional requirements”, the phrase is misleading; using either term on
exams or homework is fine.

2Some writers also contrast between user (human-ese) and system (computer-ese) requirements, but this distinction
is less important for our purposes.

1



Figure 1: The problem world, the machine solution, and the interface between them (adapted from
[van Lamsweerde 2009])

A common one-sentence summary of requirements is: “Requirements describe what the soft-
ware should do, and not how it should do it.” A key goal in requirements engineering is to avoid
implementation bias: describing the desired system in terms of its implementation. This constrains
the software engineers’ choices and may prevent them from exploring alternative (but possibly
better) solutions.

For these reasons, functional requirements should be expressed in terms of the relationship
between the system to be built (the machine) and the environment in which it will operate. The goal
of software engineering can thus be broadly reformulated as seeking to improve the world by
putting some machine into it that solves the problem at hand. Requirements then describe what
is observable at the environment-machine interface, and should be expressed as statements about
the effect the machine has on the environment (Figure 1).

Thus, requirements are largely expressed using two types of grammatical statements:

• Statements written in the indicative mood describes the environment (as-is, independent of
the system). Example: “Every product has a unique product code.” We will discuss these
statements in the context of the domain knowledge and assumptions, below.

• Statements written in the optative mood describes the environment with the system to be built.
Example: “The system shall email clients about their shipping status.”

This avoids implementation bias because the requirements don’t actually make statements
about the system being built. Instead, they describe the effect the system has on the world.3

Quality requirements

The quality requirements specify the quality with which a system should deliver its function-
ality (examples include but are not limited to performance, throughput, reliability, availability,
usability, etc). Beyond desired functionality, quality requirements serve as constraints on the im-
plemented system and provide design criteria to select between alternative implementations.

Good requirements, of any kind, are verifiable. They serve as contracts, and thus should be
testable or falsifiable. We therefore contrast informal goals, or general intentions (such as “ease of
use”, or even ”the system should be easy to use by experienced controllers, and should be orga-
nized such that user errors are minimized.”) from verifiable non-functional requirements, or state-
ments that use measures that can be objectively tested (such as “Experienced controllers shall be
able to use all the system functions after a total of two hours training. After this training, the
average number of errors made by experienced users shall not exceed two per day, on average.”)

3Of course, even following these principles, requirements can still be flawed, e.g., if they make invalid statements
about the world, if they are vague, etc, but they cannot overconstrain the implementation.

2



Informal goals may still be informative for developers, as they convey the intentions of the system
users, but verifiable quality requirements are key to effective requirements expression.

Domain knowledge

Assumptions or domain knowledge document existing properties of the environment. Such as-
sumptions serve two general purposes: (1) constrain the scope of the system by describing the con-
ditions under which it is intended to perform correctly, and (2) define the relationship/interface
between the machine model of the world and the actual world.

The first goal is straightforward enough: by documenting assumptions about the environment
as it is, we specify (and limit!) the conditions under which the system is expected to perform
correctly. Additionally, specifying a clear boundary between machine actions and environment
actions clarifies which actions are actually the responsibility of the desired system. For example,
consider a system like Netflix’s that suggests movies or TV shows to users. The scope of that
system would vary tremendously based on whether it is able to query an existing system (within
its environment) that stores and manages user watch logs and information, or if, alternatively, it
is responsible for storing and managing that information itself.

Regarding the second goal, domain assumptions ground the definitions used in requirements
in reality (providing designations). This helps ensure functional requirements are correctly defined
and implementable. Consider the following example, borrowed from [Zave and Jackson, 1997]:

Ash: Two important basic types are student and course. There is also a binary relation
enrolled. It can be expressed as: ∀s∀c(enrolled(s, c) =⇒ student(s) ∧ course(c))
Brook: Do only students enroll in courses? I don’t think that’s true.
Ash: But that’s what I mean by student!

If a student is simply a person enrolled in a course, Ash’s assertion is vacuous, but easy to im-
plement. If a student is a person who has matriculated at the university and not yet graduated or
withdrawn, Ash’s assertion strongly constrains who can take courses. The difference is important
to correct system implementation.

The problem here is that a student is just a concept that the machine will express and manip-
ulate symbolically. A machine doesn’t know what a student is. We need a designation for the
word “student” to check that a specification derived from these requirements faithfully reflects
stakeholder desires.

More formally, the meaning of “being a student,” is unshared knowledge: The machine cannot
observe it. This is true of most real-world phenomena. Other actions are observable by both the
world and the machine: This is shared knowledge. Figure 1 shows an example of the distinction:
in a payment system, the “payment record created in database” is an action observable by the
machine; both the machine and the world can see if the payment notification was sent to the seller;
but the machine cannot possibly know whether the item is actually physically delivered, because
this is a property of the physical world. The machine cannot be put in charge of unshared actions
or phenomena, and requiring them makes for requirements that are impossible to implement.
Domain knowledge and assumptions therefore provide definitions of unshared information, and
relate them to shared information that the machine can actually observe and affect.

Eliciting requirements

Stakeholders. We elicit requirements primarily by engaging stakeholders, people or groups who
will be affected by the system, directly or indirectly. The first step in elicitation is typically stake-

3



holder analysis, to identify relevant stakeholders. That is: who is the system for? Who will decide
whether it is acceptable? Missing or hidden stakeholders pose a key risk in requirements elicita-
tion because the system must, by definition, satisfy stakeholder goals. If you miss someone, you
risk not missing an important goal of the system.

We distinguish between stakeholders and the actors (or agents). An actor is an entity that inter-
acts with the system for the purpose of completing an event [Jacobson, 1992] (e.g., a user, organi-
zation, or even another system). The actors are not as broad as the stakeholders.

Interviews. The most common way to engage stakeholders to draw out system requirements is
via interviews. The goals of these interviews are to understand functional requirements, identify
and learn domain-specific concepts, and prioritize quality attributes. There are many potential
challenges to effective interviews: Stakeholders may disagree; Unhandled or hidden conflicts are
another key risk. Stakeholders do not always know what they really want nor how to articulate
it, nor how hard it is. They often have domain knowledge, use jargon, or leave out “obvious” re-
quirements that aren’t obvious to a non-expert. Effectively engaging stakeholders can be difficult
regardless of their technical sophistication.

Effective interviewing typically begins concretely, with specific questions, proposals, or by
working through a mockup or prototype. Humans are typically much better at recognizing cor-
rect or incorrect solutions than they are at solving a problem from nothing. Stories, storyboards,
scenarios, informal or hypothetical use cases, or examples can be helpful, or contrasting the pro-
posed system with a current system (if applicable). Eliciting requirements at the boundaries of the
system—corner, negative, or failure cases—can also help with scope and exceptional situations.
We will see examples of these types of tools in class and in the slides.

Cited references

1. William L. Scherlis, responding to E W Dijkstra “On the Cruelty of Really Teaching Comput-
ing Science”. Communications of the ACM 32:12, p407.

2. Pamela Zave and Michael Jackson. “Four dark corners of requirements engineering.” ACM
Trans. Softw. Eng. Methodol. 6, 1 (January 1997), 1-30.

3. Axel van Lamsweerde: Requirements Engineering - From System Goals to UML Models to Soft-
ware Specifications. Wiley 2009.

4. Ivar Jacobson, Magnus Christerson, Patrik Jonsson, Gunnar Övergaard: Object-oriented soft-
ware engineering - a use case driven approach. Addison-Wesley 1992, ISBN 978-0-201-54435-0.

4


